

DIGITAL NOTES

ON
DATA STRUCTURES USING PYTHON

B.TECH II YEAR - II SEM
(2019-20)

DEPARTMENT OF INFORMATION TECHNOLOGY

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)
(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad– 500100, Telangana State, INDIA.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY

 (R18A0553) DATA STRUCTURES USING PYTHON

UNIT I

Introduction to Python, Installation and Working with Python, Understanding Python

variables Python basic Operators, Understanding python blocks, Python Data Types:

Declaring and using Numeric data types: int, float, complex, Using string data type and string

operations.

UNIT II

Control Flow- if, if-elif-else, loops ,For loop using ranges, string ,Use of while loops in

python,Loop manipulation using pass, continue, break and else, Programming using Python

conditional and loops block, Python arrays.

UNIT III

Functions -Calling Functions, Passing Arguments, Keyword Arguments, Default Arguments,

Variable-length arguments, Anonymous Functions, Fruitful Functions(Function Returning

Values), Scope of the Variables in a Function - Global and Local Variables. Powerful

Lambda function in python.

UNIT IV

Data Structures-List Operations, Slicing, Methods; Tuples, Sets, Dictionaries, Sequences.

Comprehensions, Dictionary manipulation, list and dictionary in build functions

UNIT V

Sorting: Bubble Sort, Selection Sort, Insertion Sort, Merge sort, Quick sort, Linked Lists,

Stacks, Queues

TEXT BOOKS:

1. Allen B. Downey, ``Think Python: How to Think Like a Computer Scientist‘‘, 2nd edition,

Updated for Python 3, Shroff/O‘Reilly Publishers, 2016.

2. R. Nageswara Rao, “Core Python Programming”, dreamtech

3. Python Programming: A Modern Approach, Vamsi Kurama, Pearson

REFERENCE BOOKS:

1. Core Python Programming, W.Chun, Pearson.

2. Introduction to Python, Kenneth A. Lambert, Cengage

3. Learning Python, Mark Lutz, Orielly

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY

INDEX

S. No

Unit
Topic Page no

1

I
Introduction to Python, Installation of Python 1

2

I
Variables in Python 13

3 I Operators in Python 21

4 I Data types in Python 16

5 II Control Flow Statements 28

6 II Arrays in Python 42

7 III Functions 45

8 III Scope of Variables 52

9 III Anonymous Functions 55

10 IV Lists 61

11 IV Tuples 68

12 IV Dictionaries 73

13 V Sorting Techniques 76

14 V Linked Lists 79

15 V Stacks 84

16 V Queues 86

DARA STRUCTURES USING PYTHON Page 1

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY

Unit-I

Definition:

Python is a high-level, interpreted, interactive and object-oriented scripting language.

Python is designed to be highly readable. It uses English keywords frequently where as other

languages use punctuation, and it has fewer syntactical constructions than other languages.

 Python is Interpreted: Python is processed at runtime by the interpreter. You do not

need to compile your program before executing it. This is similar to PERL andPHP.

 Python is Interactive: You can actually sit at a Python prompt and interact with the

interpreter directly to write yourprograms.

 Python is Object-Oriented: Python supports Object-Oriented style or technique of

programming that encapsulates code withinobjects.

 Python is a Beginner's Language: Python is a great language for the beginner-level

programmers and supports the development of a wide range of applications from simple

text processing to WWW browsers togames.

History of Python

 Python was developed by Guido van Rossum in the late eighties

and early nineties at the National Research Institute for

Mathematics and Computer Science in theNetherlands.

 Python is derived from many other languages, including ABC,

Modula-3, C, C++, Algol-68, SmallTalk, Unix shell, and other

scriptinglanguages.

 At the time when he began implementing Python, Guido van Rossum was also reading

the published scripts from "Monty Python's Flying Circus" (a BBC comedy series from

the seventies, in the unlikely case you didn't know). It occurred to him that he needed a

name that was short, unique, and slightly mysterious, so he decided to call the language

Python.

 Python is now maintained by a core development team at the institute, although Guido

van Rossum still holds a vital role in directing itsprogress.

 Python 1.0 was released on 20 February,1991.

 Python 2.0 was released on 16 October 2000 and had many major new features,

including a cycle detecting garbage collector and support for Unicode. With this release

the development process was changed and became more transparent and community-

backed.

 Python 3.0 (which early in its development was commonly referred to as Python 3000 or

py3k), a major, backwards-incompatible release, was released on 3 December 2008 after

a long period of testing. Many of its major features have been back ported to the

DARA STRUCTURES USING PYTHON Page 2

backwards-compatible Python 2.6.x and 2.7.x versionseries.

 In January 2017 Google announced work on a Python 2.7 to go transcompiler, which The

Register speculated was in response to Python 2.7's plannedend-of-life.

Python Features:

Python's features include:

 Easy-to-learn: Python has few keywords, simple structure, and a clearly defined syntax.

This allows the student to pick up the languagequickly.

 Easy-to-read: Python code is more clearly defined and visible to theeyes.

 Easy-to-maintain: Python's source code is fairlyeasy-to-maintain.

 A broad standard library: Python's bulk of the library is very portable and cross-

platform compatible on UNIX, Windows, andMacintosh.

 Interactive Mode: Python has support for an interactive mode which allows interactive

testing and debugging of snippets ofcode.

 Portable: Python can run on a wide variety of hardware platforms and has the same

interface on allplatforms.

 Extendable: You can add low-level modules to the Python interpreter. These modules

enable programmers to add to or customize their tools to be moreefficient.

 Databases: Python provides interfaces to all major commercialdatabases.

 GUI Programming: Python supports GUI applications that can be created and ported to

many system calls, libraries, and windows systems, such as Windows MFC, Macintosh,

and the X Window system ofUNIX.

 Scalable: Python provides a better structure and support for large programs than shell

scripting.

Need of Python Programming

 Softwarequality

Python code is designed to be readable, and hence reusable and maintainable—

much more so than traditional scripting languages. The uniformity of Python code makes

it easy to understand, even if you did not write it. In addition, Python has deep support

for more advanced software reuse mechanisms, such as object-oriented (OO) and

functionprogramming.

 Developerproductivity

Python boosts developer productivity many times beyond compiled or statically

typed languages such as C, C++, and Java. Python code is typically one-third to less to

debug, and less to maintain after the fact. Python programs also run immediately, without

the lengthy compile and link steps required by some other tools, further boosting

programmer speed. Program portability Most Python programs run unchanged on all

major computer platforms. Porting Python code between Linux and Windows, for

example, is usually just a matter of copying a script‘s code between machines.

 Supportlibraries

Python comes with a large collection of prebuilt and portable functionality,

known as the standard library. This library supports an array of application-level

programming tasks, from text pattern matching to network scripting. In addition, Python

can be extended with both home grown libraries and a vast collection of third-party

DARA STRUCTURES USING PYTHON Page 3

application support software. Python‘s third-party domain offers tools for website

construction, numeric programming, serial port access, game development, and much

more (see ahead for asampling).

 Componentintegration

Python scripts can easily communicate with other parts of an application, using a

variety of integration mechanisms. Such integrations allow Python to be used as a

product customization and extension tool. Today, Python code can invoke C and C++

libraries, can be called from C and C++ programs, can integrate with Java and .NET

components, can communicate over frameworks such as COM and Silverlight, can

interface with devices over serial ports, and can interact over networks with interfaces

like SOAP, XML-RPC, and CORBA. It is not a standalonetool.

 Enjoyment

Because of Python‘s ease of use and built-in toolset, it can make the act of

programming more pleasure than chore. Although this may be an intangible benefit, its

effect on productivity is an important asset. Of these factors, the first two (quality and

productivity) are probably the most compelling benefits to most Python users, and merit

a fullerdescription.

 It'sObject-Oriented

Python is an object-oriented language, from the ground up. Its class model

supports advanced notions such as polymorphism, operator overloading, and multiple

inheritance; yet in the context of Python's dynamic typing, object-oriented programming

(OOP) is remarkably easy to apply. Python's OOP nature makes it ideal as a scripting

tool for object-oriented systems languages such as C++ and Java. For example, Python

programs can subclass (specialized) classes implemented in C++ or Java.

 It'sFree

Python is freeware—something which has lately been come to be called open

source software. As with Tcl and Perl, you can get the entire system for free over the

Internet. There are no restrictions on copying it, embedding it in your systems, or

shipping it with your products. In fact, you can even sell Python, if you're so inclined.

But don't get the wrong idea: "free" doesn't mean "unsupported". On the contrary, the

Python online community responds to user queries with a speed that most commercial

software vendors would do well tonotice.

 It'sPortable

Python is written in portable ANSI C, and compiles and runs on virtually every

major platform in use today. For example, it runs on UNIX systems, Linux, MS-DOS,

MS-Windows (95, 98, NT), Macintosh, Amiga, Be-OS, OS/2, VMS, QNX, and more.

Further, Python programs are automatically compiled to portable bytecode, which runs

the same on any platform with a compatible version of Python installed (more on this in

the section "It's easy to use"). What that means is that Python programs that use the core

language run the same on UNIX, MS-Windows, and any other system with a Python

interpreter.

 It'sPowerful

From a features perspective, Python is something of a hybrid. Its tool set places it

between traditional scripting languages (such as Tcl, Scheme, and Perl), and systems

DARA STRUCTURES USING PYTHON Page 4

languages (such as C, C++, and Java). Python provides all the simplicity and ease of use

of a scripting language, along with more advanced programming tools typically found in

systems development languages.

 Automatic memorymanagement

Python automatically allocates and reclaims ("garbage collects") objects when no

longer used, and most grow and shrink on demand; Python, not you, keeps track of low-

level memory details.

 Programming-in-the-large support

Finally, for building larger systems, Python includes tools such as modules,

classes, and exceptions; they allow you to organize systems into components, do OOP,

and handle events gracefully.

 It'sMixable

Python programs can be easily "glued" to components written in other languages.

In technical terms, by employing the Python/C integration APIs, Python programs can be

both extended by (called to) components written in C or C++, and embedded in (called

by) C or C++ programs. That means you can add functionality to the Python system as

needed and use Python programs within other environments or systems.

 It's Easy toUse

For many, Python's combination of rapid turnaround and language simplicity

make programming more fun than work. To run a Python program, you simply type it

and run it. There are no intermediate compile and link steps (as when using languages

such as C or C++). As with other interpreted languages, Python executes programs

immediately, which makes for both an interactive programming experience and rapid

turnaround after program changes. Strictly speaking, Python programs are compiled

(translated) to an intermediate form called bytecode, which is then run by theinterpreter.

 It's Easy toLearn

This brings us to the topic of this book: compared to other programming

languages, the core Python language is amazingly easy to learn. In fact In fact, you can

expect to be coding significant Python programs in a matter of days (and perhaps in just

hours, if you're already an experienced programmer).

 InternetScripting

Python comes with standard Internet utility modules that allow Python programs

to communicate over sockets, extract form information sent to a server-side CGI script,

parse HTML, transfer files by FTP, process XML files, and much more. There are also a

number ofperipheral tools for doing Internet programming in Python. For instance, the

HTMLGen and pythondoc systems generate HTML files from Python class-based

descriptions, and the JPython system mentioned above provides for seamless

Python/Javaintegration.

 Database Programming

Python's standard pickle module provides a simple object-persistence system: it

allows programs to easily save and restore entire Python objects to files. For more

traditional database demands, there are Python interfaces to Sybase, Oracle, Informix,

ODBC, and more. There is even a portable SQL database API for Python that runs the

same on a variety of underlying database systems, and a system named gadfly that

DARA STRUCTURES USING PYTHON Page 5

implements an SQL database for Python programs.

 Image Processing, AI, Distributed Objects,Etc.

Python is commonly applied in more domains than can be mentioned here. But in

general, many are just instances of Python's component integration role in action. By

adding Python as a frontend to libraries of components written in a compiled language

such as C, Python becomes useful for scripting in a variety of domains. For instance,

image processing for Python is implemented as a set of library components implemented

in a compiled language such as C, along with a Python frontend layer on top used to

configure and launch the compiled components.

Who Uses Python Today?

1. Google makes extensive use of Python in its web searchsystems.

2. The popular YouTube video sharing service is largely written inPython.

3. The Dropbox storage service codes both its server and desktop client software primarily

in Python.

4. The Raspberry Pi single-board computer promotes Python as its educationallanguage.

5. The widespread BitTorrent peer-to-peer file sharing system began its life as a Python

program.

6. Google‘s App Engine web development framework uses Python as an application

language.

7. Maya, a powerful integrated 3D modeling and animation system, provides a Python

scriptingAPI.

8. Intel, Cisco, Hewlett-Packard, Seagate, Qualcomm, and IBM use Python for hardware

testing.

9. NASA, Los Alamos, Fermilab, JPL, and others use Python for scientific programming

tasks.

Byte code Compilation:

Python first compiles your source code (the statements in your file) into a format

known as byte code. Compilation is simply a translation step, and byte codeis a lower-level,

platform independent representation of your source code. Roughly, Python translates each of

your source statements into a group of byte code instructions by decomposing them into

individual steps. This byte code translation is performed to speed execution —byte code can

be run much more quickly than the original source code statements in your textfile.

The Python Virtual Machine:

DARA STRUCTURES USING PYTHON Page 6

Once your program has been compiled to byte code (or the byte code has been loaded

from existing .pycfile), it is shipped off for execution to something generally known as the

python virtual machine (PVM).

Applications of Python:

1. SystemsProgramming

2. GUIs

3. InternetScripting

4. ComponentIntegration

5. DatabaseProgramming

6. RapidPrototyping

7. Numeric and ScientificProgramming

What Are Python’s Technical Strengths?

1. It‘s Object-Oriented andFunctional

2. It‘sFree

3. It‘sPortable

4. It‘sPowerful

5. It‘sMixable

6. It‘s Relatively Easy toUse

7. It‘s Relatively Easy toLearn

Download and installation Python software:

Step 1: Go to website www.python.organd click downloads select version which you want.

http://www.python.org/

DARA STRUCTURES USING PYTHON Page 7

Step 2: Click on Python 2.7.13 and download. After download open the file.

Step 3: Click on Next to continue.

Step 4: After installation location will be displayed. The Default location is C:\Python27.

Click on next to continue.

DARA STRUCTURES USING PYTHON Page 8

DARA STRUCTURES USING PYTHON Page 9

Step 5: After the python interpreter and libraries are displayed for installation. Click on Next

to continue.

Step 6: The installation has been processed.

DARA STRUCTURES USING PYTHON Page 10

Step 7: Click the Finish to complete the installation.

Setting up PATH to python:

 Programs and other executable files can be in many directories, so operating systems

provide a search path that lists the directories that the OS searches forexecutables.

 The path is stored in an environment variable, which is a named string maintained by the

operating system. This variable contains information available to the command shell and

otherprograms.

 Copy the Python installation locationC:\Python27

DARA STRUCTURES USING PYTHON Page 11

 Right-click the My Computer icon on your desktop and choose Properties. And then

select Advanced Systemproperties.

 GotoEnvironmentVariablesandgotoSystemVariablesselectPathandclickon

Edit.

 Add semicolon (;) at end and copy the location C:\Python27 and give semicolon (;) and

clickOK.

DARA STRUCTURES USING PYTHON Page 12

Running Python:

a. Running PythonInterpreter:

Python comes with an interactive interpreter. When you type python in your shell or

command prompt, the python interpreter becomes active with a >>>prompt and waits for

yourcommands.

Now you can type any valid python expression at the prompt. Python reads the typed

expression, evaluates it and prints the result.

b. Running Python Scripts inIDLE:

 GotoFile menu click on New File (CTRL+N) and write the code and save add.py

a=input("Enter a value")

b=input("Enter b value ")

c=a+b

print "The sum is",c

 And run the program by pressing F5 or RunRunModule.

DARA STRUCTURES USING PYTHON Page 13

c. Running python scripts in CommandPrompt:

 Before going to run we have to check the PATH in environmentvariables.

 Open your text editor, type the following text and save it ashello.py.

print "hello"

 And run this program by calling python hello.py. Make sure you change to the directory

where you saved the file before doingit.

Variables:

Variables are nothing but reserved memory locations to store values. This means that

when you create a variable you reserve some space in memory.

Based on the data type of a variable, the interpreter allocates memory and decides

what can be stored in the reserved memory. Therefore, by assigning different data types to

variables, you can store integers, decimals or characters in these variables.

Assigning Values to Variables

Python variables do not need explicit declaration to reserve memory space. The

declaration happens automatically when you assign a value to a variable. The equal sign (=)

is used to assign values tovariables.

The operand to the left of the = operator is the name of the variable and the operand to

the right of the = operator is the value stored in the variable. For example –

[Type text] Page 14

Multiple Assignments to variables:

Python allows you to assign a single value to several variables simultaneously.

For example –

a = b = c = 1

Here, an integer object is created with the value 1, and all three variables are assigned to

the same memory location. You can also assign multiple objects to multiple variables.

For example –

a, b, c = 1, 2.5, ”mothi”

Here, two integer objects with values 1 and 2 are assigned to variables a and b

respectively, and one string object with the value "john" is assigned to the variable c.

KEYWORDS

The following list shows the Python keywords. These are reserved words and you

cannot use them as constant or variable or any other identifier names. All the Python keywords

contain lowercase letters only.

INPUT Function:

To get input from the user you can use the input function. When the input function is

called the program stops running the program, prompts the user to enter something at the

keyboard by printing a string called the prompt to the screen, and then waits for the user to

press the Enter key. The user types a string of characters and presses enter. Then the input

function returns that string and Python continues running the program by executing the next

statement after the input statement.

Python provides the function input(). input has an optional parameter, which is the

prompt string.

For example,

[Type text] Page 15

OUTPUT function:

We use the print() function or print keyword to output data to the standard output device

(screen). This function prints the object/string written in function.

The actual syntax of the print() function is

print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False)

Here, objects is the value(s) to be printed.

The sep separator is used between the values. It defaults into a space character. After all

values are printed, end is printed. It defaults into a new line (\n).

Indentation

Code blocks are identified by indentation rather than using symbols like curly braces.

Without extra symbols, programs are easier to read. Also, indentation clearly identifies which

block of code a statement belongs to. Of course, code blocks can consist of single statements,

too. When one is new to Python, indentation may come as a surprise. Humans generally prefer

to avoid change, so perhaps after many years of coding with brace delimitation, the first

impression of using pure indentation may not be completely positive. However, recall that two

of Python's features are that it is simplistic in nature and easy toread.

Python does not support braces to indicate blocks of code for class and function

definitions or flow control. Blocks of code are denoted by line indentation. All the continuous

lines indented with same number of spaces would form a block. Python strictly follow

indentation rules to indicate the blocks.

[Type text] Page 16

Standard Data Types:

The data stored in memory can be of many types. For example, a person's age is

stored as a numeric value and his or her address is stored as alphanumeric characters. Python

has various standard data types that are used to define the operations possible on them and the

storage method for each of them.

Python has five standard data types:

 Numbers

 String

 Boolean

 List

 Tuple

 Set

 Dictionary

Python Numbers:

Number data types store numeric values. Number objects are created when you assign

a value to them.

Python supports four different numerical types:

 int (signedintegers)

 long (long integers, they can also be represented in octal andhexadecimal)

 float (floating point real values)

 complex (complexnumbers)

Python allows you to use a lowercase L with long, but it is recommended that you use

only an uppercase L to avoid confusion with the number 1. Python displays long integers

with an uppercase L.

A complex number consists of an ordered pair of real floating-point numbers denoted

by x + yj, where x is the real part and b is the imaginary part of the complex number.

For example:

[Type text] Page 17

Program:

a = 3

b = 2.65

c = 98657412345L

d = 2+5j

print "int is",a

print "float is",b

print "long is",c

print "complex is",d

Output:

int is 3

float is 2.65

long is 98657412345

complex is (2+5j)

Python Strings:

Strings in Python are identified as a contiguous set of characters represented in the

quotation marks. Python allows for either pairs of single or double quotes. Subsets of strings

can be taken using the slice operator ([] and [:]) with indexes starting at 0 in the beginning

of the string and working their way from -1 at theend.

The plus (+) sign is the string concatenation operator and the asterisk (*) is the

repetition operator. For example:

Program:

str ="WELCOME"

print str # Prints complete string

print str[0] # Prints first character of the string

print str[2:5] # Prints characters starting from 3rd to 5th

print str[2:] # Prints string starting from 3rd character

print str * 2 # Prints string two times

print str + "CSE" # Prints concatenated string

Output:

WELCOME

W

LCO

LCOME

WELCOMEWELCOME

WELCOMECSE

Built-in String methods for Strings:

SNO Method Name Description

1 capitalize() Capitalizes first letter of string.

2 center(width, fillchar)
Returns a space-padded string with the original
string centered to a total of width columns.

[Type text] Page 18

3
count(str, beg=

0,end=len(string))

Counts how many times str occurs in string or in a

substring of string if starting index beg and ending
index end are given.

4
decode(encoding='UTF-

8',errors='strict')

Decodes the string using the codec registered for

encoding. Encoding defaults to the default string

encoding.

5
encode(encoding='UTF-

8',errors='strict')

Returns encoded string version of string; on error,

default is to raise a Value Error unless errors is
given with 'ignore' or 'replace'.

6

endswith(suffix, beg=0,

end=len(string))

Determines if string or a substring of string (if

starting index beg and ending index end are given)

ends with suffix; returns true if so and false

otherwise.

7 expandtabs(tabsize=8)
Expands tabs in string to multiple spaces; defaults
to 8 spaces per tab if tabsize not provided.

8
find(str, beg=0

end=len(string))

Determine if str occurs in string or in a substring of

string if starting index beg and ending index end are

given returns index if found and -1 otherwise.

9
index(str, beg=0,
end=len(string))

Same as find(), but raises an exception if str not
found.

10 isalnum()
Returns true if string has at least 1 character and all
characters are alphanumeric and false otherwise.

11 isalpha()
Returns true if string has at least 1 character and all
characters are alphabetic and false otherwise.

12 isdigit()
Returns true if string contains only digits and false
otherwise.

13

islower()
Returns true if string has at least 1 cased character

and all cased characters are in lowercase and false
otherwise.

14 isnumeric()
Returns true if a unicode string contains only
numeric characters and false otherwise.

15 isspace()
Returns true if string contains only whitespace
characters and false otherwise.

16 istitle()
Returns true if string is properly "titlecased" and
false otherwise.

17

isupper()
Returns true if string has at least one cased

character and all cased characters are in uppercase

and false otherwise.

18

join(seq)
Merges (concatenates) the string representations of

elements in sequence seq into a string, with
separator string.

19 len(string) Returns the length of the string.

20 ljust(width[, fillchar])
Returns a space-padded string with theoriginal
string left-justified to a total of widthcolumns.

21 lower()
Converts all uppercase letters in string to
lowercase.

22 lstrip() Removes all leading whitespace in string.

23 maketrans()
Returns a translation table to be used in translates
function.

[Type text] Page 19

24 max(str)
Returns the max alphabetical character from the
string str.

25 min(str)
Returns min alphabetical character from the string
str.

26 replace(old, new [, max])
Replaces all occurrences of old in string with new
or at most max occurrences if max given.

27
rfind(str,
beg=0,end=len(string))

Same as find(), but search backwards in string.

28
rindex(str, beg=0,
end=len(string))

Same as index(), but search backwards in string.

29 rjust(width,[, fillchar])
Returns a space-padded string with the original
string right-justified to a total of width columns.

30 rstrip() Removes all trailing whitespace of string.

31
split(str="",

num=string.count(str))

Splits string according to delimiter str (space if not
provided) and returns list of substrings; split into at

most num substrings if given.

32
splitlines (
num=string.count('\n'))

Splits string at all (or num) NEWLINEs and returns
a list of each line with NEWLINEs removed.

33

startswith(str,

beg=0,end=len(string))

Determines if string or a substring of string (if

starting index beg and ending index end are given)

starts with substring str; returns true if so and false

otherwise.

34 strip([chars]) Performs both lstrip() and rstrip() on string.

35 swapcase() Inverts case for all letters in string.

36

title()
Returns "titlecased" version of string, that is, all

words begin with uppercase and the rest are
lowercase.

37
translate(table,
deletechars="")

Translates string according to translation table
str(256 chars), removing those in the del string.

38 upper() Converts lowercase letters in string to uppercase.

39

zfill (width)
Returns original string leftpadded with zeros to a

total of width characters; intended for numbers,

zfill() retains any sign given (less one zero).

40 isdecimal()
Returns true if a unicode string contains only
decimal characters and false otherwise.

Example:

str1="welcome"

print "Capitalize function---",str1.capitalize()

print str1.center(15,"*")

print "length is",len(str1)

print "count function---",str1.count('e',0,len(str1))

print "endswith function---",str1.endswith('me',0,len(str1))

print "startswith function---",str1.startswith('me',0,len(str1))

print "find function---",str1.find('e',0,len(str1))

str2="welcome2017"

print "isalnum function---",str2.isalnum()

print "isalpha function---",str2.isalpha()

print "islower function---",str2.islower()

print "isupper function---",str2.isupper()

[Type text] Page 20

str3=" welcome"

print "lstrip function---",str3.lstrip()

str4="77777777cse777777";

print "lstrip function---",str4.lstrip('7')

print "rstrip function---",str4.rstrip('7')

print "strip function---",str4.strip('7')

str5="welcome to java"

print "replace function---",str5.replace("java","python")

Output:

Capitalize function--- Welcome
****welcome****

length is 7

count function--- 2

endswith function--- True

startswith function--- False

find function--- 1

isalnum function--- True

isalpha function--- False

islower function--- True

isupper function--- False

lstrip function---

welcome lstrip function-

-- cse777777

rstrip function--- 77777777cse

strip function--- cse

replace function--- welcome to python

Python Boolean:

Booleans are identified by True or False.

Example:

Program:

a = True

b = False

print a

print b

Output:

True

False

Data Type Conversion:

Sometimes, you may need to perform conversions between the built-in types. To

convert between types, you simply use the type name as a function. For example, it is not

possible to perform “2”+4 since one operand is integer and the other is string type. To

perform this we have convert string to integer i.e., int(“2”) + 4 =6.

There are several built-in functions to perform conversion from one data type to

another. These functions return a new object representing the converted value.

Function Description

[Type text] Page 21

int(x [,base]) Converts x to an integer.

long(x [,base]) Converts x to a long integer.

float(x) Converts x to a floating-point number.

complex(real [,imag]) Creates a complex number.

str(x) Converts object x to a string representation.

repr(x) Converts object x to an expression string.

eval(str) Evaluates a string and returns an object.

tuple(s) Converts s to a tuple.

list(s) Converts s to a list.

set(s) Converts s to a set.

dict(d) Creates a dictionary, d must be a sequence of (key, value) tuples.

frozenset(s) Converts s to a frozen set.

chr(x) Converts an integer to a character.

unichr(x) Converts an integer to a Unicode character.

ord(x) Converts a single character to its integer value.

hex(x) Converts an integer to a hexadecimal string.

oct(x) Converts an integer to an octal string.

Types of Operators:

Python language supports the following types of operators.

 ArithmeticOperators +, -, *, /, %, **, //

 Comparison(Relational)Operators = =, ! =, <>, <, >, <=,>=

 AssignmentOperators =, +=, -=, *=, /=, %=, **=,//=

 LogicalOperators and, or, not

 BitwiseOperators &, |, ^, ~,<<, >>

 MembershipOperators in, notin

 IdentityOperators is, is not

Arithmetic Operators:

Some basic arithmetic operators are +, -, *, /, %, **, and //. You can apply these

operators on numbers as well as variables to perform corresponding operations.

Operator Description Example

+ Addition Adds values on either side of the operator. a + b = 30

- Subtraction
Subtracts right hand operand from left hand

operand.
a – b = -10

* Multiplication Multiplies values on either side of the operator a * b = 200

/ Division
Divides left hand operand by right hand

operand
b / a = 2

% Modulus
Divides left hand operand by right hand

operand and returns remainder
b % a = 0

** Exponent
Performs exponential (power) calculation on

operators

a**b =10 to

the power 20

[Type text] Page 22

// Floor Division

The division of operands where the result is

the quotient in which the digits after the

decimal point are removed.

9//2 = 4 and

9.0//2.0 = 4.0

Program:

a =21

b =10

print "Addition is", a + b

print "Subtraction is ", a - b

print "Multiplication is ", a * b

print "Division is ", a / b

print "Modulus is ", a % b

a =2

b =3

print "Power value is ", a ** b

a = 10

b = 4

print "Floor Division is ", a // b

Output:

Addition is 31

Subtraction is 11

Multiplication is 210

Division is2

Modulus is 1

Power value is 8

Floor Division is2

Comparison (Relational) Operators

These operators compare the values on either sides of them and decide the relation

among them. They are also called Relational operators.

Operator Description Example

= =
If the values of two operands are equal, then the
condition becomes true.

(a == b) is not true.

!=
If values of two operands are not equal, then
condition becomes true.

(a != b) is true.

<>
If values of two operands are not equal, then

condition becomes true.

(a <> b) is true. This
is similar to !=

operator.

>
If the value of left operand is greater than the value
of right operand, then condition becomes true.

(a > b) is not true.

<
If the value of left operand is less than the value of
right operand, then condition becomes true.

(a < b) is true.

> =
If the value of left operand is greater than or equal
to the value of right operand, then condition

becomes true.

(a >= b) is not true.

< =
If the value of left operand is less than or equal to
the value of right operand, then condition becomes

true.

(a <= b) is true.

[Type text] Page 23

a=20

b=30

if a < b:

print "b is big"

elif a > b:

print "a is big"

else:

print "Both are equal"

Example:

Output:

b is big

Assignment Operators

Operator Description Example

=
Assigns values from right side operands to
left side operand

c = a + b assigns
value of a + b into c

+=
Add AND

It adds right operand to the left operand and
assign the result to left operand

c += a is equivalent
to c = c + a

-=
Subtract AND

It subtracts right operand from the left
operand and assign the result to left operand

c -= a is equivalent
to c = c - a

*=
Multiply AND

It multiplies right operand with the left
operand and assign the result to left operand

c *= a is equivalent
to c = c * a

/=
Divide AND

It divides left operand with the right
operand and assign the result to left operand

c /= a is equivalent
to c = c / a

%=

Modulus AND

It takes modulus using two operands and

assign the result to left operand

c %= a is

equivalent to c = c

% a

**=

Exponent AND

Performs exponential (power) calculation

on operators and assign value to the left
operand

c **= a is

equivalent to c = c
** a

//=
Floor Division

It performs floor division on operators and
assign value to the left operand

c //= a is equivalent
to c = c // a

Example:

a=82

b=27

a += b

print a

a=25

b=12

a -= b

print a

a=24

b=4

a *= b

[Type text] Page 24

print a

a=4

b=6

a **= b

print a

Output:

109

13

96

4096

Logical Operators

Operator Description Example

And
Logical AND

If both the operands are true then condition
becomes true.

(a and b) is
true.

Or
Logical OR

If any of the two operands are non-zero then
condition becomes true.

(a or b) is true.

not
Logical NOT

Used to reverse the logical state of its operand.
Not (a and b) is
false.

Example:

a=20

b=10

c=30

if a >= b and a >= c:

print "a isbig"

elif b >= a and b >= c:

print "b isbig"

else:

print "c is big"

Output:

c is big

Bitwise Operators

Operator Description Example

&

Binary AND

Operator copies a bit to the

result if it exists in both

operands.

(a & b) = 12 (means

0000 1100)

|

Binary OR

It copies a bit if it exists in either

operand.

(a | b) = 61

(means 0011 1101)

^

Binary XOR

It copies the bit if it is set in one

operand but not both.

(a ^ b) = 49 (means

0011 0001)

[Type text] Page 25

~

Binary Ones

Complement

It is unary and has the effect of

'flipping' bits.

(~a) = -61 (means 1100 0011

in 2's complement form due to

a signed binary number.

<<

Binary Left Shift

The left operands value is moved

left by the number of bits

specified by the rightoperand.

a << 2 = 240

(means 1111 0000)

>>

Binary Right Shift

The left operands value is

moved right by the number of

bits specified by the right

operand.

a >> 2 = 15

(means 0000 1111)

Membership Operators

Python‟s membership operators test for membership in a sequence, such as strings,

lists, or tuples.

Operator Description Example

in
Evaluates to true if it finds a variable in the

specified sequence and falseotherwise.

x in y, here in results in a 1 if

x is a member of sequence y.

not in

Evaluates to true if it does not finds a

variable in the specified sequence and

false otherwise.

x not in y, here not in results

in a 1 if x is not a member of

sequence y.

Example:

a = 3

list = [1, 2, 3, 4, 5];

if (ain list):

print "available"

else:

Output:

print " not available"

[Type text] Page 26

available

Identity Operators

Identity operators compare the memory locations of two

objects.

Operator Description Example

is

Evaluates to true if the variables on

either side of the operator point to the

same object and false otherwise.

x is y, here is results in 1 if

id(x) equals id(y).

is not

Evaluates to false if the variables on

either side of the operator point to the

same object and true otherwise.

x is not y, here is not results

in 1 if id(x) is not equal to

id(y).

Example:

a =20

b =20

if (a is b):

print "Line 1 - a and b have same identity"

else:

print "Line 1 - a and b do not have same identity"

if (id(a) == id(b)):

print "Line 2 - a and b have same identity"

 else:

print "Line 2 - a and b do not have same identity"

Python Operators Precedence

The following table lists all operators from highest precedence to

lowest.

Operator Description

() Parenthesis

** Exponentiation (raise to the power)

~ x, +x,-x Complement, unary plus and minus

* / % // Multiply, divide, modulo and floor division

+ - Addition and subtraction

>><< Right and left bitwise shift

& Bitwise 'AND'

^ | Bitwise exclusive `OR' and regular `OR'

<= <>>= Comparison operators

<> == != Equality operators

= %= /= //= -= += *= **= Assignment operators

is is not Identity operators

in not in Membership operators

not or and Logical operators

[Type text] Page 27

Expression:

An expression is a combination of variables constants and operators written according

to the syntax of Python language. In Python every expression evaluates to a value i.e., every

expression results in some value of a certain type that can be assigned to a variable. Some

examples of Python expressions are shown in the table given below.

Algebraic Expression Python Expression

a x b – c a * b – c

(m + n) (x + y) (m + n) * (x + y)

(ab / c) a * b / c

3x2 +2x + 1 3*x*x+2*x+1

(x / y) + c x / y + c

Evaluation of Expressions

Expressions are evaluated using an assignment statement of the form

Variable = expression

Variable is any valid C variable name. When the statement is encountered, the

expression is evaluated first and then replaces the previous value of the variable on the left

hand side. All variables used in the expression must be assigned values before evaluation is

attempted.

Example:

a=10

b=22

c=34

x=a*b+c

y=a-b*c

z=a+b+c*c-a

print "x=",x

print "y=",y

print "z=",z

Output:

x= 254

y=-738

z= 1178

[Type text] Page 28

Unit-II
Decision Making:

Decision making is anticipation of conditions occurring while execution of the

program and specifying actions taken according to the conditions.

Decision structures evaluate multiple expressions which produce True or False as

outcome. You need to determine which action to take and which statements to execute if

outcome is True or False otherwise.

Following is the general form of a typical decision making structure found in most of

the programming languages:

Python programming language assumes any non-zero and non-null values as True,

and if it is either zero or null, then it is assumed as Falsevalue.

Statement Description

if statements if statement consists of a boolean expression followed by one or more
statements.

if...else statements if statement can be followed by an optional else statement, which
executes when the boolean expression is FALSE.

nested if statements You can use one if or else if statement inside another if or else if
statement(s).

The if Statement

It is similar to that of other languages. The if statement contains a logical expression

using which data is compared and a decision is made based on the result of the comparison.

[Type text] Page 29

Syntax:

if condition:

statements

First, the condition is tested. If the condition is True, then the statements given after

colon (:) are executed. We can write one or more statements after colon (:).

Example:

Output:

B is big

B value is 15

The if ... else statement

An else statement can be combined with an if statement. An else statement contains

the block of code that executes if the conditional expression in the if statement resolves to 0

or a FALSEvalue.

The else statement is an optional statement and there could be at most only one else

statement following if.

Syntax:

a=10

b=15

if a < b:

print “B is big”

print “B value is”,b

if condition:

statement(s)

else:

statement(s)

[Type text] Page 30

Example:

Output:

A is big

A value is 48

END

Q) Write a program for checking whether the given number is even or not.

Program:

a=input("Enter a value: ")

if a%2==0:

print "a is EVEN number"

else:

print "a is NOT EVEN Number"

Output-1: Output-2:

Enter avalue: 56 Enter a value:27

a isEVENNumber a is NOT EVENNumber

a=48

b=34

if a < b:

print “B is big”

print “B value is”,b

else:

print “A is big”

print “A value is”, a

print “END”

[Type text] Page 31

The elifStatement

The elifstatement allows you to check multiple expressions for True and execute a

block of code as soon as one of the conditions evaluates to True.

Similar to the else, the elifstatement is optional. However, unlike else, for which there

can be at most one statement, there can be an arbitrary number of elifstatements following

anif.

Syntax:

Example:

Output:

c is big

Decision Loops

In general, statements are executed sequentially: The first statement in a function is

executed first, followed by the second, and so on. There may be a situation when you need to

execute a block of code several number of times.

Programming languages provide various control structures that allow for more

complicated execution paths.

A loop statement allows us to execute a statement or group of statements multiple

times. The following diagram illustrates a loop statement:

a=20

b=10

c=30

if a >= b and a >= c:

print "a isbig"

elif b >= a and b >= c:

print "b isbig"

else:

print "c is big"

if condition1:

statement(s)

elifcondition2:
statement(s)

else:

statement(s)

[Type text] Page 32

Python programming language provides following types of loops to handle looping

requirements.

Loop Type Description

while loop
Repeats a statement or group of statements while a given condition is
TRUE. It tests the condition before executing the loop body.

for loop
Executes a sequence of statements multiple times and abbreviates the
code that manages the loop variable.

nested loops You can use one or more loop inside any another while, for loop.

The while Loop
A while loop statement in Python programming language repeatedly executes a target

statement as long as a given condition is True.

Syntax

The syntax of a while loop in Python programming language is:

while expression:

statement(s)

Here, statement(s) may be a single statement or a block of statements.

The condition may be any expression, and true is any non-zero value. The loop

iterates while the condition is true. When the condition becomes false, program control

passes to the line immediately following theloop.

In Python, all the statements indented by the same number of character spaces after a

programming construct are considered to be part of a single block of code. Python uses

indentation as its method of grouping statements.

[Type text] Page 33

1

END

2

END

3

END

1

2

3

END

Example-1: Example-2:

Output-1: Output-2:

Q) Write a program to display factorial of a given number.

Program:

Output:

Enter the number: 5

Factorial is 120

The for loop:

The for loop is useful to iterate over the elements of a sequence. It means, the for loop

can be used to execute a group of statements repeatedly depending upon the number of

elements in the sequence. The for loop can work with sequence like string, list, tuple, range

etc.

The syntax of the for loop is given below:

for var in sequence:

statement (s)

The first element of the sequence is assigned to the variable written after „for‟ and

then the statements are executed. Next, the second element of the sequence is assigned to the

variable and then the statements are executed second time. In this way, for each element of

the sequence, the statements are executed once. So, the for loop is executed as many times as

there are number of elements in thesequence.

n=input("Enter the number: ")

f=1

while n>0:

f=f*n

n=n-1

print "Factorial is",f

i=1

while i< 4:

print

ii+=1

print “END”

i=1

while i< 4:

print

ii+=1

print “END”

[Type text] Page 34

1

END

2

END

3

END

1

2

3

END

name= "python"

for letter

inname:

printletter

for x in range(10,0,-1):

print x,

n=input("Enter the number: ")

f=1

for i in range(1,n+1):

f=f*i

print "Factorial is",f

Example-1: Example-2:

Output-1: Output-2:

Example-3: Example-4:

Output-3: Output-4:

Q) Write a program to display the factorial of given number.

Program:

Output:

Enter the number: 5

Factorial is 120

10 9 8 7 6 5 4 3 2 1 p

y

t

h

o

n

for irange(1,5):

print i

print “END”

for irange(1,5):

print i

print “END”

[Type text] Page 35

for i in range(1,6):

for j in range(1,6):

if i==j:

print"*",

elifi==1 or j==1 or i==5 or j==5:

print"*",

else:

print " ",

print""

Nested Loop:

It is possible to write one loop inside another loop. For example, we can write a for

loop inside a while loop or a for loop inside another for loop. Such loops are called “nested

loops”.

Example-1:

Example-2:

Example-3:

Example-4:

Example-5:

for i in range(1,6):

for j in range(1,6):

print j,

print ""

for i in range(1,6):

for j in range(1,6):

if i==1 or j==1 or i==5 or j==5:

print "*",

else:

print " ",

print""

for i in range(1,6):

for j in range(1,6):

if i==j:

print"$",

elifi==1 or j==1 or i==5 or j==5:

print"*",

else:

print " ",

print""

for i in range(1,6):

for j in range(1,6):

print "*",

print ""

[Type text] Page 36

Example-6:

Example-7:

Example-8:

Example-9:

Example-10:

for i in range(1,6):

for j in range(1,i+1):

print j,

print ""

for i in range(1,6):

for j in range(1,4):

if i==1 or j==1 or i==3 or i==5:

print "*",

else:

print " ",

print""

for i in range(1,6):

for j in range(1,4):

if i==2 and j==1:

print"*",

elifi==4 and j==3:

print"*",

elifi==1 or i==3 or i==5:

print"*",

else:

print " ",

print""

for i in range(1,6):

for j in range(1,4):

if i==1 or j==1 or i==5:

print "*",

else:

print " ",

print""

for i in range(1,6):

for c in range(i,6):

print "",

for j in range(1,i+1):

print "*",

print ""

[Type text] Page 37

n=input("Enter the n value")

count=0

for i in range(2,n):

if n%i==0:

count=count+1

break

if count==0:

print "Prime Number"

else:

print "Not Prime Number"

a=1

for i in range(1,5):

for j in range(1,i+1):

print a,

a=a+1

print ""

Enter n value: 17

Prime Number

n=input("Enter n value ")

f0=1

f1=2

sum=f1

printf0,f1,

for i inrange(1,n-1):

f2=f0+f1

print f2,

f0=f1

f1=f2

if f2%2==0:

sum+=f2

print "\nThe sum of even Fibonacci numbers is", sum

Example-11:

1) Write a program for print given number is prime number or not using for loop.

Program:

Output:

2) WriteaprogramprintFibonacciseriesandsumtheevennumbers.Fibonacciseries

is 1,2,3,5,8,13,21,34,55

Output:

Enter n value 10

1 2 3 5 8 13 21 34 55 89

The sum of even fibonacci numbers is 44

[Type text] Page 38

3) Write a program to print n prime numbers and display the sum of primenumbers.

Program:

Output:

Enter the range: 21

1 2 3 5 7 11 13 17 19

Sum of prime numbers is 78

4) Using a for loop, write a program that prints out the decimal equivalents of 1/2, 1/3,

1/4, . . . ,1/10

Program:

for i in range(1,11):
print "Decimal Equivalent of 1/",i,"is",1/float(i)

Output:

Decimal Equivalent of 1/ 1 is 1.0

Decimal Equivalent of 1/ 2 is 0.5

Decimal Equivalent of 1/ 3 is 0.333333333333

Decimal Equivalent of 1/ 4 is 0.25

Decimal Equivalent of 1/ 5 is 0.2

Decimal Equivalent of 1/ 6 is 0.166666666667

Decimal Equivalent of 1/ 7 is 0.142857142857

Decimal Equivalent of 1/ 8 is 0.125

Decimal Equivalent of 1/ 9 is 0.111111111111

Decimal Equivalent of 1/ 10 is 0.1

n=input("Enter the range: ")

sum=0

for num in range(1,n+1):

for i in range(2,num):

if (num % i) == 0:

break

else:

print num,

sum += num

print "\nSum of prime numbers is",sum

[Type text] Page 39

sum=0

whileTrue:

n=input("Enter the number: ")

ifn==-1:

break

else:

sum+=n

print "The sum is",sum

5) Write a program that takes input from the user until the user enters -1. After display the

sum ofnumbers.

Program:

Output:

Enter the number: 1

Enter the number: 5

Enter the number: 6

Enter the number: 7

Enter the number: 8

Enter the number: 1

Enter the number: 5

Enter the number: -1

The sum is 33

6) Write a program to display the followingsequence.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Program:

7) Write a program to display the following sequence.

A

A B

A B C

A B C D

A B C DE

Program:

for i in range(1,6):

ch='A'

for j in range(1,i+1):

print ch,

ch=chr(ord(ch)+1)

print ""

ch='A'

for j in range(1,27):

print ch,

ch=chr(ord(ch)+1)

[Type text] Page 40

ch='A'

for i in range(1,6):

for j in range(1,i+1):

print ch,

ch=chr(ord(ch)+1)

print ""

8) Write a program to display the following sequence.

A

B C

D E F

G H I J

K L M N O

Program:

9) Write a program that takes input string user and display that string if string contains

at least one Uppercase character, one Lowercase character and onedigit.

Program:

Output-1:

Enter the password:"Mothi556"

******Mothi556******

Output-2:

Enter the password:"mothilal"

Invalid Password

pwd=input("Enter the password:")

u=False

l=False

d=False

for i in range(0,len(pwd)):

if pwd[i].isupper():

u=True

elifpwd[i].islower():

l=True

elifpwd[i].isdigit():

d=True

if u==True and l==True and d==True:

print pwd.center(20,"*")

else:

print "Invalid Password"

[Type text] Page 41

st=input("Enter the string:")

st2=""

for i in st:

if i not in "aeiouAEIOU":

st2=st2+i

print st2

10) Write a program to print sum of digits.

Program:

Output:

Enter the number: 123456789

sum is 45

11) Write a program to print given number is Armstrong or not.

Program:

Output:

Enter the number: 153

ARMSTRONG

12) Write a program to take input string from the user and print that string after

removingovals.

Program:

Output:

Enter the string:"Welcome to you"

Wlcm t y

n=input("Enter the number: ")

sum=0

t=n

while n>0:

r=n%10

sum+=r*r*r

n=n/10

if sum==t:

print "ARMSTRONG"

else:

print "NOT ARMSTRONG"

n=input("Enter the number: ")

sum=0

whilen>0:

r=n%10

sum+=r

n=n/10

print "sum is",sum

[Type text] Page 42

Arrays:

An array is an object that stores a group of elements of same datatype.

 Arrays can store only one type of data. It means, we can store only integer type elements

or only float type elements into an array. But we cannot store one integer, one float and

one character type element into the samearray.

 Arrays can increase or decrease their size dynamically. It means, we need not declare the

size of the array. When the elements are added, it will increase its size and when the

elements are removed, it will automatically decrease its size inmemory.

Advantages:

 Arrays are similar to lists. The main difference is that arrays can store only one type of

elements; whereas, lists can store different types of elements. When dealing with a huge

number of elements, arrays use less memory than lists and they offer faster execution than

lists.

 The size of the array is not fixed in python. Hence, we need not specify how many

elements we are going to store into an array in thebeginning.

 Arrays can grow or shrink in memory dynamically (duringruntime).

 Arrays are useful to handle a collection of elements like a group of numbers orcharacters.

 Methods that are useful to process the elements of any array are available in „array‟

module.

Creating an array:

Syntax:

arrayname = array(type code, [elements])

The type code „i‟ represents integer type array where we can store integer numbers. If

the type code is „f‟ then it represents float type array where we can store numbers with

decimal point.

Type code Description Minimum size in bytes

„b‟ Signed integer 1

„B‟ Unsigned integer 1

„i‟ Signed integer 2

„I‟ Unsigned integer 2

„l‟ Signed integer 4

„L‟ Unsigned integer 4

„f‟ Floating point 4

„d‟ Double precision floating point 8

„u‟ Unicode character 2

Example:

The type code character should be written in single quotes. After that the elements

should be written in inside the square braces [] as

a = array („i‟, [4,8,-7,1,2,5,9])

[Type text] Page 43

Importing the Array Module:

There are two ways to import the array module into our program.

The first way is to import the entire array module using import statement as,

import array

when we import the array module, we are able to get the „array‟ class of that module that

helps us to create an array.

a = array.array(‘i’, [4,8,-7,1,2,5,9])

Here the first „array‟ represents the module name and the next „array‟ represents the class

name for which the object is created. We should understand that we are creating our array as

an object of array class.

The next way of importing the array module is to write:

from array import *

Observe the „*‟ symbol that represents „all‟. The meaning of this statement is this: import all

(classes, objects, variables, etc) from the array module into our program. That means

significantlyimportingthe„array‟classof„array‟module.So,thereisnoneedtomentionthe module

name before our array name while creating it. We can create arrayas:

a = array(‘i’, [4,8,-7,1,2,5,9])

Example:

from array import *

arr = array(„i‟, [4,8,-7,1,2,5,9])

for i in arr:

print i,

Output:

4 8 -7 1 2 5 9

Indexing and slicing of arrays:

An index represents the position number of an element in an array. For example, when

we creating following integer type array:

a = array(‘i’, [10,20,30,40,50])

Python interpreter allocates 5 blocks of memory, each of 2 bytes size and stores the

elements 10, 20, 30, 40 and 50 in these blocks.

10 20 30 40 50

a[0] a[1] a[2] a[3] a[4]

Example:

from array import *

a=array('i', [10,20,30,40,50,60,70])

print "length is",len(a)

print " 1st position character", a[1]

print "Characters from 2 to 4", a[2:5]

print "Characters from 2 to end", a[2:]

print "Characters from start to 4",a[:5]

print "Characters from start to end",a[:]

[Type text] Page 44

a[3]=45

a[4]=55

print "Characters from start to end after modifications ",a[:]

Output:

length is 7

1st position character 20

Characters from 2 to 4 array('i', [30, 40, 50])

Characters from 2 to end array('i', [30, 40, 50, 60, 70])

Characters from start to 4 array('i', [10, 20, 30, 40, 50])

Characters from start to end array('i', [10, 20, 30, 40, 50, 60, 70])

Characters from start to end after modifications array('i', [10, 20, 30, 45, 55, 60, 70])

Array Methods:

Method Description
a.append(x) Adds an element x at the end of the existing array a.

a.count(x) Returns the number of occurrences of x in the array a.

a.extend(x) Appends x at the end of the array a. „x‟ can be another array or
iterable object.

a.fromfile(f,n) Reads n items from from the file object f and appends at the end of
the array a.

a.fromlist(l) Appends items from the l to the end of the array. l can be any list or
iterable object.

a.fromstring(s) Appends items from string s to end of the array a.

a.index(x) Returns the position number of the first occurrence of x in the array.
Raises „ValueError‟ if not found.

a.pop(x) Removes the item x from the array a and returns it.

a.pop() Removes last item from the array a

a.remove(x) Removes the first occurrence of x in the array. Raises „ValueError‟
if not found.

a.reverse() Reverses the order of elements in the array a.

a.tofile(f) Writes all elements to the file f.

a.tolist() Converts array „a‟ into a list.

a.tostring() Converts the array into a string.

DATA STRUCTURES USING PYTHON Page 45

Unit-III

FUNCTIONS:
A function is a block of organized, reusable code that is used to perform a single,

related action.

 Once a function is written, it can be reused as and when required. So, functions are also

called reusablecode.

 Functions provide modularity for programming. A module represents a part of the

program. Usually, a programmer divides the main task into smaller sub tasks called

modules.

 Code maintenance will become easy because of functions. When a new feature has tobe

added to the existing software, a new function can be written and integrated into the

software.

 When there is an error in the software, the corresponding function can be modified

without disturbing the other functions in thesoftware.

 The use of functions in a program will reduce the length of theprogram.

As you already know, Python gives you many built-in functions like sqrt(), etc. but you can

also create your own functions. These functions are called user-definedfunctions.

Difference between a function and a method:

A function can be written individually in a python program. A function is called using

its name. When a function is written inside a class, it becomes a „method‟. A method is called

using object name or class name. A method is called using one of the following ways:

Objectname.methodname()

Classname.methodname()

Defining a Function

You can define functions to provide the required functionality. Here are simple rules to

define a function inPython.

 Function blocks begin with the keyword def followed by the function name and

parentheses ().

 Any input parameters or arguments should be placed within these parentheses. You

can also define parameters inside theseparentheses.

 The first statement of a function can be an optional statement - the documentation

string of the function ordocstring.

 The code block within every function starts with a colon (:) and isindented.

 The statement return [expression] exits a function, optionally passing back an

expression to the caller. A return statement with no arguments is the same as return

none.

Syntax:
 def functionname (parameters):

"""function_docstring"""

function_suite

return [expression]

DATA STRUCTURES USING PYTHON Page 46

def add(a,b):

"""This function sum the numbers"""

c=a+b

return c

print add(5,12) #17

print add(1.5,6)#6.5

By default, parameters have a positional behavior and you need to inform them in the same

order that they were defined.

Example:

def add(a,b):

"""This function sum thenumbers"""

c=a+b

print c

return

Here, „def’ represents starting of function. „add’ is function name. After this name,

parentheses () are compulsory as they denote that it is a function and not a variable or

something else. In the parentheses we wrote two variables „a‟ and „b‟ these variables are

called „parameters‟. A parameter is a variable that receives data from outside a function. So,

this function receives two values from outside and those are stored in the variables „a‟ and

„b‟. After parentheses, we put colon (:) that represents the beginning of the function body.

The function body contains a group of statements called „suite‟.

Calling Function:

A function cannot run by its own. It runs only when we call it. So, the next step is to

call function using its name. While calling the function, we should pass the necessary values

to the function in the parentheses as:

add(5,12)

Here, we are calling „add‟ function and passing two values 5 and 12 to that function.

When this statement is executed, the python interpreter jumps to the function definition and

copies the values 5 and 12 into the parameters „a‟ and „b‟ respectively.

Example:

Returning Results from a function:

We can return the result or output from the function using a „return‟ statement in the

function body. When a function does not return any result, we need not write the return

statement in the body of the function.

Q) Write a program to find the sum of two numbers and return the result from the

function.

def add(a,b):

"""This function sum the numbers"""

c=a+b

print c

add(5,12) # 17

DATA STRUCTURES USING PYTHON Page 47

Returning multiple values from a function:

A function can returns a single value in the programming languages like C, C++ and

JAVA. But, in python, a function can return multiple values. When a function calculates

multiple results and wants to return the results, we can use return statement as:

return a, b, c

Here, three values which are in „a‟, „b‟ and „c‟ are returned. These values are returned bythe

function as a tuple. To grab these values, we can three variables at the time of calling the

functionas:

x, y, z = functionName()

Here, „x‟, „y‟ and „z‟ are receiving the three values returned by the function.

Example:

Functions are First Class Objects:

In Python, functions are considered as first class objects. It means we can use functions as

perfect objects. In fact when we create a function, the Python interpreter internally creates an

object. Since functions are objects, we can pass a function to another function just like we

pass an object (or value) to a function. The following possibilities are:

 It is possible to assign a function to avariable.

 It is possible to define one function inside anotherfunction.

 It is possible to pass a function as parameter to anotherfunction.

 It is possible that a function can return another function.

To understand these points, we will take a few simpleprograms.

Q) A python program to see how to assign a function to a variable. def

display(st):

return "hai"+st

x=display("cse")

printx Output:haicse

Q) A python program to know how to define a function inside another function. def

display(st):

def message():

return "how r u?"

res=message()+st

return res

x=display("cse")

printx Output: how r u?cse

def calc(a,b):

c=a+b

d=a-b

e=a*b

return

c,d,ex,y,z=calc(5,8

) print

"Addition=",x

print "Subtraction=",y

print "Multiplication=",z

DATA STRUCTURES USING PYTHON Page 48

Q) A python program to know how to pass a function as parameter to another function. def

display(f):

return "hai"+f def

message():

return "how r u?"

fun=display(message())

printfun Output: haihow ru?

Q) A python program to know how a function can return anotherfunction.

defdisplay():

def message():

return "how r u?"

return message fun=display()

printfun() Output: how ru?

Pass by Value:

Pass by value represents that a copy of the variable value is passed to the function and

any modifications to that value will not reflect outside the function. In python, the values are

sent to functions by means of object references. We know everything is considered as an

object in python. All numbers, strings, tuples, lists and dictionaries are objects.

If we store a value into a variable as:

x=10

In python, everything is an object. An object can be imagined as a memory block

where we can store some value. In this case, an object with the value „10‟ is created in

memoryforwhichaname„x‟isattached.So,10 istheobject and„x‟isthenameortaggiven to that

object. Also, objects are created on heap memory which is a very huge memory that depends

on the RAM of our computer system.

Example: A Python program to pass an integer to a function and modifyit.

defmodify(x):

x=15

print "inside",x,id(x)

x=10

modify(x)

print "outside",x,id(x)

Output:

From the output, we can understand that the value of „x‟ in the function is 15 and that is not

available outside the function. When we call the modify() function and pass „x‟ as:

modify(x)

We should remember that we are passing the object references to the modify() function. The

object is 10 and its references name is „x‟. This is being passed to the modify() function.

Inside the function, we are using:

x=15

inside 15 6356456

outside 10 6356516

DATA STRUCTURES USING PYTHON Page 49

This means another object 15 is created in memory and that object is referenced by

the name „x‟. The reason why another object is created in the memory is that the integer

objects are immutable (not modifiable). Soin the function, when we display „x‟ value, it will

display 15. Once we come outside the function and display „x‟ value, it will display numbers

of „x‟ inside and outside the function, and we see different numbers since they are different

objects.

In python, integers, floats, strings and tuples are immutable. That means their data

cannot be modified. When we try to change their value, a new object is created with the

modified value.

Fig. Passing Integer to a Function

Pass by Reference:

Pass by reference represents sending the reference or memory address of the variable

to the function. The variable value is modified by the function through memory address and

hence the modified value will reflect outside the function also.

In python, lists and dictionaries are mutable. That means, when we change their data,

the same object gets modified and new object is not created. In the below program, we are

passing a list of numbers to modify () function. When we append a new element to the list,

the same list is modified and hence the modified list is available outside the function also.

Example: A Python program to pass a list to a function and modify it.

defmodify(a):

a.append(5)

print "inside",a,id(a)

a=[1,2,3,4]

modify(a)

print "outside",a,id(a)

Output:

In the above program the list „a‟ is the name or tag that represents the list object.

Before calling the modify() function, the list contains 4 elements as: a=[1,2,3,4]

Inside the function, we are appending a new element „5‟ to the list. Since, lists are

mutable, adding a new element to the same object is possible. Hence, append() method

inside [1, 2, 3, 4, 5] 45355616

outside [1, 2, 3, 4, 5] 45355616

DATA STRUCTURES USING PYTHON Page 50

modifies the same object.

Fig. Passing a list to the function

Formal and Actual Arguments:

When a function is defined, it may have some parameters. These parameters are

usefulto receive values from outside of the function. They are called „formal arguments‟.

When we call the function, we should pass data or values to the function. These values are

called„actualarguments‟.Inthefollowingcode,„a‟and„b‟areformalargumentsand„x‟and

„y‟ are actual arguments.

Example:

def add(a,b): # a, b are formal arguments

c=a+b

print c

x,y=10,15

add(x,y) # x, y are actualarguments

The actual arguments used in a function call are of 4 types:

a) Positionalarguments

b) Keywordarguments

c) Defaultarguments

d) Variable lengtharguments

a) PositionalArguments:

These are the arguments passed to a function in correct positional order. Here, the

number of arguments and their position in the function definition should match exactly with

the number and position of argument in the function call.

def attach(s1,s2):

s3=s1+s2

prints3

attach("New","Delhi") #Positional arguments

This function expects two strings that too in that order only. Let‟s assume that this function

attaches the two strings as s1+s2. So, while calling this function, we are supposed to pass

only two strings as:attach("New","Delhi")

DATA STRUCTURES USING PYTHON Page 51

def grocery(item,price):

print "item=",item

print "price=",price

grocery(item="sugar",price=50.75) # keyword arguments

grocery(price=88.00,item="oil") # keyword arguments

The preceding statements displays the following output NewDelhi

Suppose, we passed "Delhi" first and then "New", then the result will be: "DelhiNew". Also,

if we try to pass more than or less than 2 strings, there will be anerror.

b) KeywordArguments:

Keyword arguments are arguments that identify the parameters by their names. For

example, the definition of a function that displays grocery item and its price can be written

as:

def grocery(item, price):

At the time of calling this function, we have to pass two values and we can mention which

value is for what. For example,

grocery(item=’sugar’, price=50.75)

Here,wearementioningakeyword„item‟anditsvalueandthenanotherkeyword„price‟and its

value. Please observe these keywords are nothing but the parameter names which receive

these values. We can change the order of the argumentsas:

grocery(price=88.00, item=’oil’)

In this way, even though we change the order of the arguments, there will not be any problem

as the parameter names will guide where to store that value.

Output:

item= sugar

price= 50.75

item= oil price=

88.0

c) DefaultArguments:

We can mention some defaultvalue for the function parameters in the definition.

Let‟s take the definition of grocery() function as:

def grocery(item, price=40.00)

Here, the first argument is „item‟ whose default value is not mentioned. But the second

argument is „price‟ and its default value is mentioned to be 40.00. at the time of calling this

function, if we do not pass „price‟ value, then the default value of 40.00 is taken. If we

mention the „price‟ value, then that mentioned value is utilized. So, a default argument is an

argument that assumes a default value if a value is not provided in the function call for that

argument.

Example: def grocery(item,price=40.00):

print "item=",item

print "price=",price

grocery(item="sugar",price=50.75)

grocery(item="oil")

DATA STRUCTURES USING PYTHON Page 52

Output:
item= sugar

price= 50.75

item= oil

price= 40.0

d) Variable LengthArguments:

Sometimes, the programmer does not know how many values a function may receive. In that

case, the programmer cannot decide how many arguments to be given in the function

definition. for example, if the programmer is writing a function to add two numbers, he/she

can write:

add(a,b)

But, the user who is using this function may want to use this function to find sum of three

numbers. In that case, there is a chance that the user may provide 3 arguments to this function

as:

add(10,15,20)

Then the add() function will fail and error will be displayed. If the programmer want to

develop a function that can accept „n‟ arguments, that is also possible in python. For this

purpose, a variable length argument is used in the function definition. a variable length

argument is an argument that can accept any number of values. The variable length argument

is written with a „*‟ symbol before it in the function definition as:

def add(farg, *args):

here, „farg‟ is the formal; argument and „*args‟ represents variable length argument. We can

pass 1 or more values to this „*args‟ and it will store them all in a tuple.

Example:

Output:

sum is15

sum is35

sum is65

Local and Global Variables:

When we declare a variable inside a function, it becomes a local variable. A local

variable is a variable whose scope is limited only to that function where it is created. That

means the local variable value is available only in that function and not outside of that

function.

def add(farg,*args):

sum=0

for i in args:

sum=sum+i

print "sum is",sum+farg

add(5,10)

add(5,10,20)

add(5,10,20,30)

DATA STRUCTURES USING PYTHON Page 53

When the variable „a‟ is declared inside myfunction() and hence it is available inside that

function. Once we come out of the function, the variable „a‟ is removed from memory and it

is not available.

Example-1:

def myfunction():

a=10

print "Inside function",a #display 10 myfunction()

print "outside function",a # Error, not available

Output:

Inside function 10 outside

function

NameError: name 'a' is not defined

When a variable is declared above a function, it becomes global variable. Such variables are

available to all the functions which are written after it.

Example-2:

a=11

def myfunction():

b=10

print "Inside function",a #display global var

print "Inside function",b #display local var

myfunction()

print "outside function",a # available print

"outside function",b # error

Output:

Inside function11

Inside function10

outside function 11

outsidefunction

NameError: name 'b' is not defined The

GlobalKeyword:

Sometimes, the global variable and the local variable may have the same name. In that case,

the function, by default, refers to the local variable and ignores the global variable. So, the

global variable is not accessible inside the function but outside of it, it is accessible.

Example-1:

a=11

def myfunction():

a=10

print "Inside function",a # display local variable

myfunction()

print "outside function",a # display global variable

Output:

Inside function 10

outside function 11

DATA STRUCTURES USING PYTHON Page 54

When the programmer wants to use the global variable inside a function, he can use the

keyword „global‟ before the variable in the beginning of the function body as:

global Example-2:

a=11

def myfunction():

global a

a=10

print "Inside function",a # display global variable myfunction()

print "outside function",a # display global variable

Output:

Inside function 10

outside function 10

Recursive Functions:

A function that calls itself is known as „recursive function‟. For example, we can write the

factorial of 3 as:

factorial(3) = 3 * factorial(2) Here,

factorial(2) = 2 *factorial(1) And,

factorial(1) = 1 *factorial(0)

Now, if we know that the factorial(0) value is 1, all the preceding statements will evaluate

and give the resultas:

factorial(3) = 3 * factorial(2)

= 3 * 2 * factorial(1)

= 3 * 2 * 1 * factorial(0)

= 3 * 2 * 1 * 1

= 6

From the above statements, we can write the formula to calculate factorial of any number „n‟

as: factorial(n) = n *factorial(n-1)

Example-1:

def factorial(n):

if n==0:

result=1

else:

result=n*factorial(n-1)

return result

for i in range(1,5):

print "factorial of ",i,"is",factorial(i)

Output:

factorial of 1is1

factorial of 2is2

factorial of 3is6

factorial of 4 is 24

DATA STRUCTURES USING PYTHON Page 55

Anonymous Function or Lambdas:

These functions are called anonymous because they are not declared in the standard

manner by using the def keyword. You can use the lambda keyword to create small

anonymous functions.

 Lambda forms can take any number of arguments but return just one value in the form of

an expression. They cannot contain commands or multipleexpressions.

 An anonymous function cannot be a direct call to print because lambda requires an

expression.

 Lambda functions have their own local namespace and cannot access variables other than

those in their parameter list and those in the globalnamespace.

 Although it appears that lambda's are a one-line version of a function, they are not

equivalent to inline statements in C or C++, whose purpose is by passing function stack

allocation during invocation for performancereasons.

Let‟stake a normal function that returns square of given value:

def square(x):

return x*x

the same function can be written as anonymous function as:

lambda x: x*x

The colon (:) represents the beginning of the function that contains an expression x*x. The
syntax is:

lambda

argument_list:expression Example:

f=lambda x:x*x

value = f(5) print

value

The map() Function

The advantage of the lambda operator can be seen when it is used in combination with

the map() function. map() is a function with two arguments:

r = map(func, seq)

The first argument funcis the name of a function and the second a sequence (e.g. a list) seq.

map() applies the function functo all the elements of the sequence seq. It returns a new list

with the elements changed by func

def fahrenheit(T):

return ((float(9)/5)*T + 32) def

celsius(T):

return (float(5)/9)*(T-32)

temp = (36.5, 37, 37.5,39)

F = map(fahrenheit, temp) C =

map(celsius, F)

In the example above we haven't used lambda. By using lambda, we wouldn't have had to

define and name the functions fahrenheit() and celsius(). You can see this in the following

interactive session:

>>> Celsius = [39.2, 36.5, 37.3, 37.8]

>>> Fahrenheit = map(lambda x: (float(9)/5)*x + 32, Celsius)

>>> print Fahrenheit

[102.56, 97.700000000000003, 99.140000000000001, 100.03999999999999]

>>> C = map(lambda x: (float(5)/9)*(x-32), Fahrenheit)

DATA STRUCTURES USING PYTHON Page 56

>>> print C

[39.200000000000003, 36.5, 37.300000000000004, 37.799999999999997]

map() can be applied to more than one list. The lists have to have the same length. map() will

apply its lambda function to the elements of the argument lists, i.e. it first applies to the

elements with the 0th index, then to the elements with the 1st index until the n-th index is

reached:

>>> a = [1,2,3,4]

>>> b = [17,12,11,10]

>>> c = [-1,-4,5,9]

>>>map(lambda x,y:x+y, a,b) [18,

14, 14,14]

>>>map(lambda x,y,z:x+y+z,a,b,c) [17,

10, 19,23]

>>>map(lambda x,y,z:x+y-z, a,b,c) [19,

18, 9, 5]

We can see in the example above that the parameter x gets its values from the list a, while y

gets its values from b and z from list c.

Filtering

The function filter(function, list) offers an elegant way to filter out all the elements of a list,

for which the function functionreturns True. The function filter(f,l) needs a function f as its

first argument. f returns a Boolean value, i.e. either True or False. This function will be

applied to every element of the list l. Only if f returns True will the element of the list be

included in the result list.

>>> fib = [0,1,1,2,3,5,8,13,21,34,55]

>>> result = filter(lambda x: x % 2, fib)

>>> print result

[1, 1, 3, 5, 13, 21, 55]

>>> result = filter(lambda x: x % 2 == 0, fib)

>>> print result [0, 2,

8, 34]

Reducing a List

The function reduce(func, seq) continually applies the function func() to the sequence seq. It

returns a single value.

If seq = [s1, s2, s3, ... ,sn], calling reduce(func, seq) works like this:

 At first the first two elements of seq will be applied to func, i.e. func(s1,s2) The list on

which reduce() works looks now like this: [func(s1, s2), s3, ... , sn]

 In the next step funcwill be applied on the previous result and the third element of the

list, i.e. func(func(s1, s2),s3). The list looks like this now: [func(func(s1, s2),s3), ... , sn]

 Continue like this until just one element is left and return this element as the result of

reduce()

We illustrate this process in the following example:

>>>reduce(lambda x,y: x+y, [47,11,42,13]) 113

DATA STRUCTURES USING PYTHON Page 57

The following diagram shows the intermediate steps of the calculation:

Examples of reduce ()

Determining the maximum of a list of numerical values by using reduce:

>>> f = lambda a,b: a if (a > b) else b

>>>reduce(f, [47,11,42,102,13])

102

>>>

Calculating the sum of the numbers from 1 to 100:

>>>reduce(lambda x, y: x+y, range(1,101)) 5050

Function Decorators:

A decorator is a function that accepts a function as parameter and returns a function.

A decorator takes the result of a function, modifies the result and returns it. Thus decorators

are useful to perform some additional processing required by afunction.

The following steps are generally involved in creation of decorators:

 We should define a decorator function with another function name asparameter.

 We should define a function inside the decorator function. This function actually modifies

or decorates the value of the function passed to the decoratorfunction.

 Return the inner function that has processed or decorated thevalue.

Example-1:

def decor(fun):

def inner():

value=fun()

return value+2

return inner def

num():

return 10

result=decor(num) print

result()

Output:

12

To apply the decorator to any function, we can use ‘@’ symbol and decorator name just

DATA STRUCTURES USING PYTHON Page 58

above the functiondefinition.

Example-2: A python program to create two decorators. def decor1(fun):

def inner():

value=fun()

return value+2

return inner

def decor2(fun):

def inner():

value=fun()

return value*2

return inner

def num():

return 10

Output:

result=decor1(decor2(num))

print result()

22

Example-3: A python program to create two decorators to the same function using „@‟

symbol.

def decor1(fun):

def inner():

value=fun()

return value+2

return inner

def decor2(fun):

def inner():

value=fun()

return value*2

return inner

@decor1

@decor2

def num():

return 10

Output:

print num()

22

DATA STRUCTURES USING PYTHON Page 59

Function Generators:

A generator is a function that produces a sequence of results instead of a single value.

„yield‟ statement is used to return the value. def

mygen(n):

i = 0

while i<n:

yieldi

i +=1

g=mygen(6) for

i in g:

print i,

Output:

0 1 2 3 4 5

Note: „yield‟ statement can be used to hold the sequence of results and return it.

Modules:

A module is a file containing Python definitions and statements. The file name is the

module name with the suffix.py appended. Within a module, the module‟s name (as a string)

is available as the value of the global variable __name. For instance, use yourfavourite text

editor to create a file called fibo.py in the current directory with the followingcontents:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n

a, b = 0,1

while b <n:

printb,

a, b = b, a+b

def fib2(n): # return Fibonacci series up to n

result =[]

a, b = 0,1
while b < n:

result.append(b)

a, b = b, a+b

return result

Now enter the Python interpreter and import this module with the following command:

>>>import fibo

This does not enter the names of the functions defined in fibodirectly in the current symbol

table; it only enters the module name fibothere. Using the module name you can access the

functions:

>>>fibo.fib(1000)

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

>>>fibo.fib2(100)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55,89]

>>>fibo.name

'fibo'

DATA STRUCTURES USING PYTHON Page 60

from statement:
 A module can contain executable statements as well as function definitions. These

statements are intended to initialize the module. They are executed only the first time the

module name is encountered in an import statement. (They are also run if the file is

executed as ascript.)

 Each module has its own private symbol table, which is used as the global symbol table by

all functions defined in the module. Thus, the author of a module can use global variables

in the module without worrying about accidental clashes with a user‟s global variables. On

the other hand, if you know what you are doing you can touch a module‟s global variables

with the same notation used to refer to its functions,modname.itemname.

 Modules can import other modules. It is customary but not required to place all import

statements at the beginning of a module (or script, for that matter). The imported module

names are placed in the importing module‟s global symbol table.

 There is a variant of the import statement that imports names from a module directly into

the importing module‟s symbol table. Forexample:

>>> from fibo import fib, fib2

>>>fib(500)

1 1 2 3 5 8 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the local

symbol table (so in the example, fibo is not defined).

There is even a variant to import all names that a module defines:

>>> from fibo import *

>>>fib(500)

1 1 2 3 5 8 13 21 34 55 89 144 233 377

Namespaces and Scoping

 Variables are names (identifiers) that map to objects. A namespace is a dictionary of

variable names (keys) and their corresponding objects(values).

 A Python statement can access variables in a local namespace and in the global

namespace. If a local and a global variable have the same name, the local variable

shadows the globalvariable.

 Each function has its own local namespace. Class methods follow the same scoping

rule as ordinaryfunctions.

 Python makes educated guesses on whether variables are local or global. It assumes

that any variable assigned a value in a function islocal.

 Therefore, in order to assign a value to a global variable within a function, you must

first use the global statement.

 The statement global VarNametells Python that VarNameis a global variable. Python

stops searching the local namespace for thevariable.

 For example, we define a variable Money in the global namespace. Within the

functionMoney, we assign Money a value, therefore Python assumes Money as a local

variable. However, we accessed the value of the local variable Money before setting

it, so an UnboundLocalErroris the result. Uncommenting the global statement fixes

the problem.

DATA STRUCTURES USING PYTHON Page 61

Unit-IV
A sequence is a datatype that represents a group of elements. The purpose of any

sequence is to store and process group elements. In python, strings, lists, tuples and

dictionaries are very important sequence datatypes.

LIST:

A list is similar to an array that consists of a group of elements or items. Just like an

array, a list can store elements. But, there is one major difference between an array and a list.

An array can store only one type of elements whereas a list can store different types of

elements. Hence lists are more versatile and useful than an array.

Creating a List:

Creating a list is as simple as putting different comma-separated values between

square brackets.

student = [556, “Mothi”, 84, 96, 84, 75, 84]

We can create empty list without any elements by simply writing empty square

brackets as: student=[]

We can create a list by embedding the elements inside a pair of square braces []. The

elements in the list should be separated by a comma (,).

Accessing Values in list:

To access values in lists, use the square brackets for slicing along with the index or

indices to obtain value available at that index. To view the elements of a list as a whole, we

can simply pass the list name to print function.

Ex:

student = [556, “Mothi”, 84, 96, 84, 75, 84] print

student

print student[0] # Access 0th element

print student[0:2] # Access 0th to 1st elements

print student[2:] # Access 2nd to end of list elements print

student[:3] # Access starting to 2nd elements print student[:] #

Access starting to ending elements print student[-1] # Access last

index value

print student[-1:-7:-1] # Access elements in reverse order

Output:

[556, “Mothi”, 84, 96, 84, 75, 84]

Mothi

[556, “Mothi”]

[84, 96, 84, 75, 84]

[556, “Mothi”, 84]

[556, “Mothi”, 84, 96, 84, 75, 84]

DATA STRUCTURES USING PYTHON Page 62

84

[84, 75, 84, 96, 84, “Mothi”]

Creating lists using range() function:

We can use range() function to generate a sequence of integers which can be stored in

a list. To store numbers from 0 to 10 in a list as follows.

numbers = list(range(0,11))

print numbers # [0,1,2,3,4,5,6,7,8,9,10]

To store even numbers from 0 to 10in a list as follows.

numbers = list(range(0,11,2))

print numbers # [0,2,4,6,8,10]

Looping on lists:

We can also display list by using for loop (or) while loop. The len() function useful

to know the numbers of elements in the list. while loop retrieves starting from 0th to the last

element i.e.n-1

Ex-1:

numbers = [1,2,3,4,5]

for i in numbers:

print i,

Output:

1 2 3 4 5

Updating and deleting lists:

Lists are mutable. It means we can modify the contents of a list. We can append,

update or delete the elements of a list depending upon our requirements.

Appending an element means adding an element at the end of the list. To, append a

new element to the list, we should use the append() method.

Example:

lst=[1,2,4,5,8,6]

printlst # [1,2,4,5,8,6]

lst.append(9)

printlst # [1,2,4,5,8,6,9]

Updating an element means changing the value of the element in the list. This can be

done by accessing the specific element using indexing or slicing and assigning a new value.

Example:

lst=[4,7,6,8,9,3]

printlst #[4,7,6,8,9,3]

lst[2]=5 # updates 2nd element in the list

printlst # [4,7,5,8,9,3]

lst[2:5]=10,11,12 # update 2nd element to 4th element in the list

printlst # [4,7,10,11,12,3]

DATA STRUCTURES USING PYTHON Page 63

Deleting an element from the list can be done using ‘del’ statement. The del statement

takes the position number of the element to be deleted.

Example:

lst=[5,7,1,8,9,6]

dellst[3] # delete 3rd element from the list i.e., 8

printlst # [5,7,1,9,6]

If we want to delete entire list, we can give statement like del lst.

Concatenation of Two lists:

Wecansimplyuse„+‟operatorontwoliststojointhem.Forexample,„x‟and„y‟are two lists.

If we wrtex+y, the list „y‟ is joined at the end of the list„x‟.

Example:

x=[10,20,32,15,16]

y=[45,18,78,14,86]

print x+y # [10,20,32,15,16,45,18,78,14,86]

Repetition of Lists:

Wecanrepeattheelementsofalist„n‟numberoftimesusing„*‟operator.

x=[10,54,87,96,45]

print x*2 # [10,54,87,96,45,10,54,87,96,45]

Membership in Lists:

Wecancheckifanelementisamemberofalistbyusing„in‟and„notin‟operator.If the

element is a member of the list, then „in‟ operator returns True otherwise returns False.If the

element is not in the list, then „not in‟ operator returns True otherwise returnsFalse.

Example:

x=[10,20,30,45,55,65] a=20

print ain x # True

a=25

print ain x # False

a=45

print a not in x # False a=40

print a not in x # True

Aliasing and Cloning Lists:

Giving a new name to an existing list is called ‘aliasing’. The new name is called

‘alias name’. To provide a new name to this list, we can simply use assignment operator (=).

Example:

x = [10, 20, 30, 40, 50, 60]

y=x # x is aliased asy

printx #[10,20,30,40,50,60]

printy #[10,20,30,40,50,60]

x[1]=90 # modify 1st element in x

printx # [10,90,30,40,50,60]

printy #[10,90,30,40,50,60]

DATA STRUCTURES USING PYTHON Page 64

In this case we are having only one list of elements but with two different names „x‟

and „y‟. Here, „x‟ is the original name and „y‟ is the alias name for the same list. Hence, any

modifications done to x‟ will also modify „y‟ and vice versa.

Obtaining exact copy of an existing object (or list) is called „cloning‟. To Clone a list,

we can take help of the slicing operation [:].

Example:

x = [10, 20, 30, 40, 50, 60]

y=x[:] # x is cloned asy

printx #[10,20,30,40,50,60]

printy #[10,20,30,40,50,60]

x[1]=90 # modify 1st element in x

printx # [10,90,30,40,50,60]

printy #[10,20,30,40,50,60]

When we clone a list like this, a separate copy of all the elements is stored into „y‟.

Thelists„x‟and„y‟areindependentlists.Hence,anymodificationsto„x‟willnotaffect„y‟ and

viceversa.

Methods in Lists:

Method Description

lst.index(x) Returns the first occurrence of x in the list.

lst.append(x) Appends x at the end of the list.

lst.insert(i,x) Inserts x to the list in the position specified by i.

lst.copy() Copies all the list elements into a new list and returns it.

lst.extend(lst2) Appends lst2 to list.

lst.count(x) Returns number of occurrences of x in the list.

lst.remove(x) Removes x from the list.

lst.pop() Removes the ending element from the list.

lst.sort() Sorts the elements of list into ascending order.

lst.reverse() Reverses the sequence of elements in the list.

lst.clear() Deletes all elements from the list.

max(lst) Returns biggest element in the list.

min(lst) Returns smallest element in the list.

DATA STRUCTURES USING PYTHON Page 65

Example:

lst=[10,25,45,51,45,51,21,65]

lst.insert(1,46)

printlst # [10,46,25,45,51,45,51,21,65]

printlst.count(45) # 2

Finding Common Elements in Lists:

Sometimes, it is useful to know which elements are repeated in two lists. For

example, there is a scholarship for which a group of students enrolled in a college. There is

another scholarship for which another group of students got enrolled. Now, we wan to know

the names of the students who enrolled for both the scholarships so that we can restrict them

to take only one scholarship. That means, we are supposed to find out the common students

(or elements) both thelists.

First of all, we should convert the lists into lists into sets, using set() function, as:

set(list). Then we should find the common elements in the two sets using intersection()

method.

Example:

scholar1=[„mothi‟, „sudheer‟, „vinay‟, „narendra‟, „ramakoteswararao‟] scholar2=[

„vinay‟, „narendra‟, „ramesh‟]

s1=set(scholar1) s2=set(scholar2)

s3=s1.intersection(s2) common

=list(s3)

printcommon # display [„vinay‟, „narendra‟]

Nested Lists:

A list within another list is called a nested list. We know that a list contains several

elements. When we take a list as an element in another list, then that list is called a nested list.

Example:

a=[10,20,30]

b=[45,65,a]

printb # display [45, 65, [10, 20, 30]]

printb[1] # display65

printb[2] # display [10, 20, 30]

printb[2][0] # display10

print b[2][1] # display 20 print b[2][2]

display 30 for x in b[2]:

print x, # display 10 2030

DATA STRUCTURES USING PYTHON Page 66

mat=[[1,2,3],[4,5,6],[7,8,9]]

for r in mat:

print r

print ""

m=len(mat)

n=len(mat[0])

for i in range(0,m):

for j in range(0,n):

print mat[i][j],

print ""

print ""

for i in range(0,m1):

for j in range(0,n1):

c[i][j]= a[i][j]+b[i][j]

Nested Lists as Matrices:

Suppose we want to create a matrix with 3 rows 3 columns, we should create a list

with 3 other lists as:

mat = [[1, 2, 3] , [4, 5, 6] , [7, 8, 9]]

Here, „mat‟ is a list that contains 3 lists which are rows of the „mat‟ list. Each row

contains again 3 elements as:

[[1, 2, 3], # first row

[4, 5, 6], # second row

[7, 8, 9]] # third row

Example:

One of the main use of nested lists is that they can be used to represent matrices. A

matrix represents a group of elements arranged in several rows and columns. In python,

matrices are created as 2D arrays or using matrix object in numpy. We can also create a

matrix using nested lists.

Q) Write a program to perform addition of two matrices.

a=[[1,2,3],[4,5,6],[7,8,9]] b=[[4,5,6],[7,8,9],[1,2,3]]

c=[[0,0,0],[0,0,0],[0,0,0]]

m1=len(a) n1=len(a[0])

m2=len(b) n2=len(b[0])

for i in range(0,m1):

for j in range(0,n1):

print "\t",c[i][j],

print ""

DATA STRUCTURES USING PYTHON Page 67

Q) Write a program to perform multiplication of two matrices.

a=[[1,2,3],[4,5,6]]

b=[[4,5],[7,8],[1,2]]

c=[[0,0],[0,0]]

m1=len(a) n1=len(a[0])

m2=len(b) n2=len(b[0])

for i in range(0,m1):

for j in range(0,n2):

for k in range(0,n1):

c[i][j] +=a[i][k]*b[k][j]

for i in range(0,m1):

for j in range(0,n2):

print "\t",c[i][j],

print ""

List Comprehensions:

List comprehensions represent creation of new lists from an iterable object (like a list,

set, tuple, dictionary or range) that satisfy a given condition. List comprehensions contain

very compact code usually a single statement that performs the task.

We want to create a list with squares of integers from 1 to 100. We can write codeas: squares=[]

for i in range(1,11):

squares.append(i**2)

The preceding code will create „squares‟ list with the elements as shown below:

 [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

The previous code can rewritten in a compact way as:

 squares=[x**2 for x inrange(1,11)]

This is called list comprehension. From this, we can understand that a list

comprehension consists of square braces containing an expression (i.e., x**2). After the

expression, a fro loop and then zero or more if statements can be written.

[expression for item1 in iterable if statement1

 for item1 in iterable if statement2

 for item1 in iterable if statement3…..]

Example:

 Even_squares = [x**2 for x in range(1,11) ifx%2==0]

It will display the list even squares aslist.

 [4, 16, 36, 64, 100]

DATA STRUCTURES USING PYTHON Page 68

tup=(10, 20, 31.5, „Gudivada‟)

TUPLE:

A Tuple is a python sequence which stores a group of elements or items. Tuples are

similar to lists but the main difference is tuples are immutable whereas lists are mutable.

Once we create a tuple we cannot modify its elements. Hence, we cannot perform operations

like append(), extend(), insert(), remove(), pop() and clear() on tuples. Tuples are generally

used to store data which should not be modified and retrieve that data ondemand.

Creating Tuples:

We can create a tuple by writing elements separated by commas inside parentheses().

The elements can be same datatype or different types.

To create an empty tuple, we can simply write empty parenthesis, as: tup=()

To create a tuple with only one element, we can, mention that element in parenthesis

and after that a comma is needed. In the absence of comma, python treats the element assign

ordinary data type.

tup = (10) tup = (10,)

print tup # display 10 print tup # display 10

print type(tup) # display <type „int‟> print type(tup) # display<type„tuple‟>

To create a tuple with different types of elements:

If we do not mention any brackets and write the elements separating them by comma,

then they are taken by default as a tuple.

tup= 10, 20, 34, 47

It is possible to create a tuple from a list. This is done by converting a list into a tuple

using tuple function.

n=[1,2,3,4]

tp=tuple(n)

printtp # display(1,2,3,4)

Another way to create a tuple by using range() function that returns a sequence.

t=tuple(range(2,11,2))

printt # display(2,4,6,8,10)

Accessing the tuple elements:

Accessing the elements from a tuple can be done using indexing or slicing. This is

same as that of a list. Indexing represents the position number of the element in the tuple. The

position starts from 0.

tup=(50,60,70,80,90)

printtup[0] # display50

printtup[1:4] # display(60,70,80)

print tup[-1] # display90

printtup[-1:-4:-1] # display (90,80,70)

printtup[-4:-1] # display(60,70,80)

DATA STRUCTURES USING PYTHON Page 69

Updating and deleting elements:

Tuples are immutable which means you cannot update, change or delete the values of

tuple elements.

Example-1:

Example-2:

However, you can always delete the entire tuple by using the statement.

Note that this exception is raised because you are trying print the deleted element.

DATA STRUCTURES USING PYTHON Page 70

Operations on tuple:

Operation Description

len(t) Return the length of tuple.

tup1+tup2 Concatenation of two tuples.

Tup*n Repetition of tuple values in n number of times.

x in tup Return True if x is found in tuple otherwise returns False.

cmp(tup1,tup2) Compare elements of both tuples

max(tup) Returns the maximum value in tuple.

min(tup) Returns the minimum value in tuple.

tuple(list) Convert list into tuple.

tup.count(x)
Returns how many times the element „x‟ is found in
tuple.

tup.index(x)
Returns the first occurrence of the element „x‟ in tuple.
Raises ValueError if „x‟ is not found in the tuple.

sorted(tup)
Sorts the elements of tuple into ascending order.
sorted(tup,reverse=True) will sort in reverse order.

cmp(tuple1, tuple2)

The method cmp() compares elements of two tuples.

Syntax

cmp(tuple1, tuple2)

Parameters

tuple1 -- This is the first tuple to be compared

tuple2 -- This is the second tuple to be compared

Return Value

If elements are of the same type, perform the compare and return the result. If elements are

different types, check to see if they are numbers.

 If numbers, perform numeric coercion if necessary andcompare.

 If either element is a number, then the other element is "larger" (numbers are

"smallest").

 Otherwise, types are sorted alphabetically byname.

If we reached the end of one of the tuples, the longer tuple is "larger." If we exhaust both

tuples and share the same data, the result is a tie, meaning that 0 is returned.

Example:

Nested Tuples:

Python allows you to define a tuple inside another tuple. This is called a nested tuple.

Output: (“RAVI”, “CSE”, 92.00)

(“RAMU”, “ECE”, 93.00)

(“RAJA”, “EEE”, 87.00)

#display-1
#display1

tuple1 = (123,'xyz')
tuple2 = (456,'abc')
print cmp(tuple1, tuple2)
print cmp(tuple2, tuple1)

students=((“RAVI”, “CSE”, 92.00), (“RAMU”, “ECE”, 93.00), (“RAJA”, “EEE”, 87.00))

for i in students:

print i

DATA STRUCTURES USING PYTHON Page 71

Set_variable_name={var1, var2, var3, var4, …….}

s={1, 2.5, “abc” }

print s # display set([1, 2.5, “abc”])

s=set([1, 2.5, “abc”])

prints # display set([1, 2.5, “abc”])

SET:

Set is another data structure supported by python. Basically, sets are same as lists but

with a difference that sets are lists with no duplicate entries. Technically a set is a mutable

and an unordered collection of items. This means that we can easily add or remove items

fromit.

Creating a Set:

A set is created by placing all the elements inside curly brackets {}. Separated by

comma or by using the built-in function set().

Syntax:

Example:

Converting a list into set:

A set can have any number of items and they may be of different data types. set()

function is used to converting list into set.

We can also convert tuple or string into set.

tup= (1, 2, 3, 4, 5)

print set(tup) # set([1, 2, 3, 4, 5])

str=“MOTHILAL”

printstr # set(['i', 'h', 'm', 't', 'o'])

Operations on set:

Sno Operation Result

1 len(s) number of elements in set s (cardinality)

2 x in s test x for membership in s

3 x not in s test x for non-membership in s

4

s.issubset(t)

(or)

s <= t

test whether every element in s is in t

5

s.issuperset(t)

(or)

s >= t

test whether every element in t is in s

6 s = = t
Returns True if two sets are equivalent and returns

False.

7 s ! = t
Returns True if two sets are not equivalent and

returns False.

8

s.union(t)

(or)

s|t

new set with elements from both s and t

9

s.intersection(t)

(or)

s & t

new set with elements common to s and t

DATA STRUCTURES USING PYTHON Page 72

Sno Operation Result

10

s.difference(t)

(or)

s-t

new set with elements in s but not in t

11

s.symmetric_difference(t)

(or)

s ^ t

new set with elements in either s or t but not both

12 s.copy() new set with a shallow copy of s

13 s.update(t) return set s with elements added from t

14 s.intersection_update(t) return set s keeping only elements also found in t

15 s.difference_update(t) return set s after removing elements found in t

16
s.symmetric_difference_upda

te(t)
return set s with elements from s or t but not both

17 s.add(x) add element x to set s

18 s.remove(x) remove x from set s; raises KeyError if not present

19 s.discard(x) removes x from set s if present

20 s.pop()
remove and return an arbitrary element from s;

raises KeyError if empty

21 s.clear() remove all elements from set s

22 max(s) Returns Maximum value in a set

23 min(s) Returns Minimum value in a set

24 sorted(s)
Return a new sorted list from the elements in

theset.

Note:

To create an empty set you cannot write s={}, because python will make this as a

directory. Therefore, to create an empty set use set()function.

s=set() s={}

printtype(s) # display<type„set‟> print type(s) # display <type„dict‟>

Updating a set:

Since sets are unordered, indexing has no meaning. Set operations do not allow users

to access or change an element using indexing or slicing.

DATA STRUCTURES USING PYTHON Page 73

d={„Regd.No‟:556,„Name‟:‟Mothi‟,„Branch‟:„CSE‟}

printd[„Regd.No‟] # 556

printd[„Name‟] # Mothi

printd[„Branch‟] # CSE

Dictionary:

A dictionary represents a group of elements arranged in the form of key-value pairs.

The first element is considered as „key‟ and the immediate next element is taken as its

„value‟. The key and its value are separated by a colon (:). All the key-value pairs in a

dictionary are inserted in curly braces {}.

d= { „Regd.No‟: 556, „Name‟:‟Mothi‟, „Branch‟: „CSE‟ }

Here, the name of dictionary is „dict‟. The first element in the dictionary is a string

„Regd.No‟. So, this is called „key‟. The second element is 556 which is taken as its „value‟.

Example:

To access the elements of a dictionary, we should not use indexing or slicing. For example,
dict[0] or dict[1:3] etc. expressions will give error. To access the value associated with a key,

we can mention the key name inside the square braces, as: dict[„Name‟].

If we want to know how many key-value pairs are there in a dictionary, we can use the len()

function, as shown

d={„Regd.No‟:556,„Name‟:‟Mothi‟,„Branch‟:„CSE‟} printlen(d)

 # 3

We can also insert a new key-value pair into an existing dictionary. This is done by

mentioning the key and assigning a value to it.

d={'Regd.No':556,'Name':'Mothi','Branch':'CSE'}

printd #{'Branch': 'CSE', 'Name': 'Mothi', 'Regd.No': 556}

d['Gender']="Male"

printd # {'Gender': 'Male', 'Branch': 'CSE', 'Name': 'Mothi', 'Regd.No': 556}

Suppose, we want to delete a key-value pair from the dictionary, we can use del statementas:

del dict[„Regd.No‟] #{'Gender': 'Male', 'Branch': 'CSE', 'Name': 'Mothi'}

To Test whether a „key‟ is available in a dictionary or not, we can use „in‟ and „not in‟

operators. These operators return either True orFalse.

We can use any datatypes for value. For example, a value can be a number, string, list, tuple

or another dictionary. But keys should obey therules:

 Keys should be unique. It means, duplicate keys are not allowd. If we enter same key

again, the old key will be overwritten and only the new key will beavailable.

emp={'nag':10,'vishnu':20,'nag':20}

print emp # {'nag': 20, 'vishnu': 20}

 Keys should be immutable type. For example, we can use a number, string or tuples

as keys since they are immutable. We cannot use lists or dictionaries as keys. If they

are used as keys, we will get„TypeError‟.

„Name‟ind #checkif„Name‟isakeyindandreturnsTrue/False

emp={['nag']:10,'vishnu':20,'nag':20}

Traceback (most recent call last):

File "<pyshell#2>", line 1, in <module>

emp={['nag']:10,'vishnu':20,'nag':20}

TypeError: unhashable type: 'list'

DATA STRUCTURES USING PYTHON Page 74

countries = ['USA', 'INDIA', 'GERMANY', 'FRANCE']

cities = ['Washington', 'New Delhi', 'Berlin', 'Paris']

z=zip(countries, cities)

d=dict(z)

print d

Dictionary Methods:

Method Description
d.clear() Removes all key-value pairs from dictionary„d‟.

d2=d.copy() Copies all elements from„d‟ into a new dictionary d2.

d.fromkeys(s [,v])
Create a new dictionary with keys from sequence„s‟ and
values all set to „v‟.

d.get(k [,v])
Returns the value associated with key „k‟. If key is not
found, it returns „v‟.

d.items()
Returns an object that contains key-value pairs of„d‟. The
pairs are stored as tuples in the object.

d.keys() Returns a sequence of keys from the dictionary„d‟.

d.values() Returns a sequence of values from the dictionary„d‟.

d.update(x) Adds all elements from dictionary „x‟ to„d‟.

d.pop(k [,v])

Removesthekey„k‟anditsvaluefrom„d‟andreturnsthe

value.Ifkeyisnotfound,thenthevalue„v‟isreturned.If

keyisnotfoundand„v‟isnotmentionedthen„KeyError‟
is raised.

d.setdefault(k [,v])
If key „k‟ is found, its value is returned. If key is not
found, then the k, v pair is stored into the dictionary„d‟.

Using for loop with Dictionaries:

for loop is very convenient to retrieve the elements of a dictionary. Let‟stake asimple

dictionary that contains color code and its nameas:

colors = { 'r':"RED", 'g':"GREEN", 'b':"BLUE", 'w':"WHITE" }

Here, „r‟, „g‟, „b‟ represents keys and „RED‟, „GREEN‟, „BLUE‟ and „WHITE‟

indicate values.

colors = { 'r':"RED", 'g':"GREEN", 'b':"BLUE", 'w':"WHITE" }

for k incolors:

print k # displays only keys for k

incolors:

print colors[k] # keys to to dictionary and display the values

Converting Lists into Dictionary:

When we have two lists, it is possible to convert them into a dictionary. For example,

we have two lists containing names of countries and names of their capital cities.

There are two steps involved to convert the lists into a dictionary. The first step is to

create a „zip‟ class object by passing the two lists to zip() function. The zip() function is

useful to convert the sequences into a zip class object. The second step is to convert the zip

object into a dictionary by using dict() function.

Example:

Output:

{'GERMANY': 'Berlin', 'INDIA': 'New Delhi', 'USA': 'Washington', 'FRANCE': 'Paris'}

DATA STRUCTURES USING PYTHON Page 75

d={'m1':85,'m3':84,'eng':86,'c':91}

sum=0

for i in d.values():

sum+=i

printsum # 346

Converting Strings into Dictionary:

When a string is given with key and value pairs separated by some delimiter like

a comma (,) we can convert the string into a dictionary and use it as dictionary.

s="Vijay=23,Ganesh=20,Lakshmi=19,Nikhi

l=22" s1=s.split(',')

s2=[]

d={}

for i in s1:

s2.append(i.spli

t('='))

print d

{'Ganesh': '20', 'Lakshmi': '19', 'Nikhil': '22', 'Vijay': '23'}

Q) A Python program to create a dictionary and find the sum of values.

Q) A Python program to create a dictionary with cricket player’s names and scores in a

match. Also we are retrieving runs by entering the player’s name.

Enter How many

players? 3 Enter Player

name: "Sachin" Enter

score:98

Enter Player name:

"Sehwag" Enter

score:91

Enter Player name:

"Dhoni" Enter score:95

{'Sehwag': 91, 'Sachin': 98, 'Dhoni':

95} Enter name of player for score:

"Sehwag" The Score is 91

n=input("Enter How many players? ")

d={}

for i in range(0,n):

k=input("Enter Player name: ")

v=input("Enter score: ")

d[k]=v

print d

name=input("Enter name of player for score: ")

print "The Score is",d[name]

DATA STRUCTURES USING PYTHON Page 76

Unit-V

Sorting:

Sorting refers to arranging data in a particular format. Sorting algorithm specifies the

way to arrange data in a particular order. Most common orders are in numerical or

lexicographical order.

The importance of sorting lies in the fact that data searching can be optimized to a very

high level, if data is stored in a sorted manner. Sorting is also used to represent data in more

readable formats.

Bubble Sort:

Bubble sort, sometimes referred to as sinking sort, is a simple sorting algorithm that

repeatedly steps through the list to be sorted, compares each pair of adjacent items and swaps

them if they are in the wrong order. The pass through the list is repeated until no swaps are

needed, which indicates that the list is sorted.

defbubbleSort(arr):

 n =len(arr)

 # Traverse through all array elements

 fori inrange(n):

 # Last i elements are already in place

 forj inrange(0, n-i-1):

 # traverse the array from 0 to n-i-1

 # Swap if the element found is greater

 # than the next element

 ifarr[j] >arr[j+1] :

 arr[j], arr[j+1] =arr[j+1], arr[j]

 # Driver code to test above

arr =[64, 34, 25, 12, 22, 11, 90]

bubbleSort(arr)

print("Sorted array is:")

fori inrange(len(arr)):

 print("%d"%arr[i])

Selection Sort:

The selection sort algorithm sorts an array by repeatedly finding the minimum element

(considering ascending order) from unsorted part and putting it at the beginning. The algorithm

maintains two subarrays in a given array.

1) The subarray which is already sorted.

2) Remaining subarray which is unsorted.

In every iteration of selection sort, the minimum element (considering ascending order) from

the unsorted subarray is picked and moved to the sorted subarray.

def selection_sort(alist):

 for i in range(0, len(alist) - 1):

 smallest = i

DATA STRUCTURES USING PYTHON Page 77

 for j in range(i + 1, len(alist)):

 if alist[j] <alist[smallest]:

 smallest = j

alist[i], alist[smallest] = alist[smallest], alist[i]

alist = input('Enter the list of numbers: ').split()

alist = [int(x) for x in alist]

selection_sort(alist)

print('Sorted list: ', end='')

print(alist)

Insertion Sort:

This is an in-place comparison-based sorting algorithm. Here, a sub-list is maintained

which is always sorted. For example, the lower part of an array is maintained to be sorted. An

element which is to be 'insert'ed in this sorted sub-list, has to find its appropriate place and then

it has to be inserted there. The array is searched sequentially and unsorted items are moved and

inserted into the sorted sub-list (in the same array). This algorithm is not suitable for large data

sets as its average and worst case complexity are of Ο(n2), where n is the number of items.

def insertion_sort(alist):

 for i in range(1, len(alist)):

 temp = alist[i]

 j = i - 1

 while (j >= 0 and temp <alist[j]):

alist[j + 1] = alist[j]

 j = j - 1

alist[j + 1] = temp

 alist = input('Enter the list of numbers: ').split()

alist = [int(x) for x in alist]

insertion_sort(alist)

print('Sorted list: ', end='')

print(alist)

Merge sort:

Merge sort is a sorting technique based on divide and conquer technique. With worst-

case time complexity being Ο(n log n), it is one of the most respected algorithms.Merge sort

first divides the array into equal halves and then combines them in a sorted manner.

def merge_sort(alist, start, end):

 '''Sorts the list from indexes start to end - 1 inclusive.'''

 if end - start > 1:

 mid = (start + end)//2

merge_sort(alist, start, mid)

merge_sort(alist, mid, end)

merge_list(alist, start, mid, end)

 def merge_list(alist, start, mid, end):

 left = alist[start:mid]

 right = alist[mid:end]

 k = start

i = 0

 j = 0

 while (start + i< mid and mid + j < end):

DATA STRUCTURES USING PYTHON Page 78

 if (left[i]<= right[j]):

alist[k] = left[i]

i = i + 1

 else:

alist[k] = right[j]

 j = j + 1

 k = k + 1

 if start + i< mid:

 while k < end:

alist[k] = left[i]

i = i + 1

 k = k + 1

 else:

 while k < end:

alist[k] = right[j]

 j = j + 1

 k = k + 1

alist = input('Enter the list of numbers: ').split()

alist = [int(x) for x in alist]

merge_sort(alist, 0, len(alist))

print('Sorted list: ', end='')

print(alist)

Quick sort:

Quick sort is a highly efficient sorting algorithm and is based on partitioning of array of

data into smaller arrays. A large array is partitioned into two arrays one of which holds values

smaller than the specified value, say pivot, based on which the partition is made and another

array holds values greater than the pivot value.

Quick sort partitions an array and then calls itself recursively twice to sort the two

resulting subarrays. This algorithm is quite efficient for large-sized data sets as its average and

worst case complexity are of Ο(n2), where n is the number of items. The algorithm is given

below:

Step 1 − Choose the highest index value has pivot

Step 2 − Take two variables to point left and right of the list excluding pivot

Step 3 − left points to the low index

Step 4 − right points to the high

Step 5 − while value at left is less than pivot move right

Step 6 − while value at right is greater than pivot move left

Step 7 − if both step 5 and step 6 does not match swap left and right

Step 8 − if left ≥ right, the point where they met is new pivot

def quicksort(alist, start, end):

 '''Sorts the list from indexes start to end - 1 inclusive.'''

 if end - start > 1:

 p = partition(alist, start, end)

quicksort(alist, start, p)

quicksort(alist, p + 1, end)

 def partition(alist, start, end):

 pivot = alist[start]

DATA STRUCTURES USING PYTHON Page 79

i = start + 1

 j = end - 1

 while True:

 while (i<= j and alist[i]<= pivot):

i = i + 1

 while (i<= j and alist[j]>= pivot):

 j = j - 1

 if i<= j:

alist[i], alist[j] = alist[j], alist[i]

 else:

alist[start], alist[j] = alist[j], alist[start]

 return j

alist = input('Enter the list of numbers: ').split()

alist = [int(x) for x in alist]

quicksort(alist, 0, len(alist))

print('Sorted list: ', end='')

print(alist)

Linked Lsit:

A linked list is a sequence of data structures, which are connected together via links.Linked

List is a sequence of links which contains items. Each link contains a connection to another

link. Linked list is the second most-used data structure after array. Following are the important

terms to understand the concept of Linked List.

 Link − Each link of a linked list can store a data called an element.

 Next − Each link of a linked list contains a link to the next link called Next.

 LinkedList − A Linked List contains the connection link to the first link called First.

Linked List Representation:

Linked list can be visualized as a chain of nodes, where every node points to the next node.

As per the above illustration, following are the important points to be considered.

 Linked List contains a link element called first.

 Each link carries a data field(s) and a link field called next.

 Each link is linked with its next link using its next link.

 Last link carries a link as null to mark the end of the list.

Types of Linked List:

Following are the various types of linked list.

 Simple Linked List − Item navigation is forward only.

 Doubly Linked List − Items can be navigated forward and backward.

DATA STRUCTURES USING PYTHON Page 80

 Circular Linked List − Last item contains link of the first element as next and the first

element has a link to the last element as previous.

Creation of Linked list

A linked list is created by using the node class we studied in the last chapter. We create a Node

object and create another class to use this ode object. We pass the appropriate values thorugh

the node object to point the to the next data elements. The below program creates the linked list

with three data elements. In the next section we will see how to traverse the linked list.

class Node:

 def __init__(self, dataval=None):

self.dataval = dataval

self.nextval = None

class SLinkedList:

 def __init__(self):

self.headval = None

list1 = SLinkedList()

list1.headval = Node("Mon")

e2 = Node("Tue")

e3 = Node("Wed")

Link first Node to second node

list1.headval.nextval = e2

Link second Node to third node

e2.nextval = e3

Traversing a Linked List

Singly linked lists can be traversed in only forwrad direction starting form the first data element.

We simply print the value of the next data element by assgining the pointer of the next node to

the current data element.

class Node:

 def __init__(self, dataval=None):

self.dataval = dataval

self.nextval = None

class SLinkedList:

 def __init__(self):

self.headval = None

 def listprint(self):

printval = self.headval

 while printval is not None:

 print (printval.dataval)

printval = printval.nextval

DATA STRUCTURES USING PYTHON Page 81

list = SLinkedList()

list.headval = Node("Mon")

e2 = Node("Tue")

e3 = Node("Wed")

Link first Node to second node

list.headval.nextval = e2

Link second Node to third node

e2.nextval = e3

list.listprint()

Insertion in a Linked List

Inserting element in the linked list involves reassigning the pointers from the existing nodes to

the newly inserted node. Depending on whether the new data element is getting inserted at the

beginning or at the middle or at the end of the linked list, we have the below scenarios.

Inserting at the Beginning of the Linked List

This involves pointing the next pointer of the new data node to the current head of the linked

list. So the current head of the linked list becomes the second data element and the new node

becomes the head of the linked list.

class Node:

 def __init__(self, dataval=None):

self.dataval = dataval

self.nextval = None

class SLinkedList:

 def __init__(self):

self.headval = None

Print the linked list

 def listprint(self):

printval = self.headval

 while printval is not None:

 print (printval.dataval)

printval = printval.nextval

 def AtBegining(self,newdata):

NewNode = Node(newdata)

Update the new nodes next val to existing node

NewNode.nextval = self.headval

self.headval = NewNode

list = SLinkedList()

list.headval = Node("Mon")

e2 = Node("Tue")

e3 = Node("Wed")

list.headval.nextval = e2

e2.nextval = e3

DATA STRUCTURES USING PYTHON Page 82

list.AtBegining("Sun")

list.listprint()

Inserting at the End of the Linked List

This involves pointing the next pointer of the the current last node of the linked list to the new

data node. So the current last node of the linked list becomes the second last data node and the

new node becomes the last node of the linked list.

class Node:

 def __init__(self, dataval=None):

self.dataval = dataval

self.nextval = None

class SLinkedList:

 def __init__(self):

self.headval = None

Function to add newnode

 def AtEnd(self, newdata):

NewNode = Node(newdata)

 if self.headval is None:

self.headval = NewNode

 return

laste = self.headval

 while(laste.nextval):

laste = laste.nextval

laste.nextval=NewNode

Print the linked list

 def listprint(self):

printval = self.headval

 while printval is not None:

 print (printval.dataval)

printval = printval.nextval

list = SLinkedList()

list.headval = Node("Mon")

e2 = Node("Tue")

e3 = Node("Wed")

list.headval.nextval = e2

e2.nextval = e3

list.AtEnd("Thu")

list.listprint()

Inserting in between two Data Nodes

This involves chaging the pointer of a specific node to point to the new node. That is possible

by passing in both the new node and the existing node after which the new node will be

inserted. So we define an additional class which will change the next pointer of the new node to

DATA STRUCTURES USING PYTHON Page 83

the next pointer of middle node. Then assign the new node to next pointer of the middle node.

class Node:

 def __init__(self, dataval=None):

self.dataval = dataval

self.nextval = None

class SLinkedList:

 def __init__(self):

self.headval = None

Function to add node

 def Inbetween(self,middle_node,newdata):

 if middle_node is None:

print("The mentioned node is absent")

 return

NewNode = Node(newdata)

NewNode.nextval = middle_node.nextval

middle_node.nextval = NewNode

Print the linked list

 def listprint(self):

printval = self.headval

 while printval is not None:

 print (printval.dataval)

printval = printval.nextval

list = SLinkedList()

list.headval = Node("Mon")

e2 = Node("Tue")

e3 = Node("Thu")

list.headval.nextval = e2

e2.nextval = e3

list.Inbetween(list.headval.nextval,"Fri")

list.listprint()

Removing an Item form a Liked List

We can remove an existing node using the key for that node. In the below program we locate

the previous node of the node which is to be deleted. Then point the next pointer of this node to

the next node of the node to be deleted.

class Node:

 def __init__(self, data=None):

self.data = data

self.next = None

class SLinkedList:

 def __init__(self):

self.head = None

 def Atbegining(self, data_in):

NewNode = Node(data_in)

NewNode.next = self.head

self.head = NewNode

DATA STRUCTURES USING PYTHON Page 84

Function to remove node

 def RemoveNode(self, Removekey):

HeadVal = self.head

 if (HeadVal is not None):

 if (HeadVal.data == Removekey):

self.head = HeadVal.next

HeadVal = None

 return

 while (HeadVal is not None):

 if HeadVal.data == Removekey:

 break

prev = HeadVal

HeadVal = HeadVal.next

 if (HeadVal == None):

 return

prev.next = HeadVal.next

HeadVal = None

 def LListprint(self):

printval = self.head

 while (printval):

 print(printval.data),

printval = printval.next

llist = SLinkedList()

llist.Atbegining("Mon")

llist.Atbegining("Tue")

llist.Atbegining("Wed")

llist.Atbegining("Thu")

llist.RemoveNode("Tue")

llist.LListprint()

Stack:

Stack is a linear data structure which follows a particular order in which the operations are

performed. The order may be LIFO(Last In First Out) or FILO(First In Last Out).

Mainly the following three basic operations are performed in the stack:

Push: Adds an item in the stack. If the stack is full, then it is said to be an Overflow condition.

Pop: Removes an item from the stack. The items are popped in the reversed order in which they

are pushed. If the stack is empty, then it is said to be an Underflow condition.

Peek or Top: Returns top element of stack.

isEmpty: Returns true if stack is empty, else false

PUSH into a Stack

class Stack:

 def __init__(self):

DATA STRUCTURES USING PYTHON Page 85

self.stack = []

 def add(self, dataval):

Use list append method to add element

 if dataval not in self.stack:

self.stack.append(dataval)

 return True

 else:

 return False

Use peek to look at the top of the stack

 def peek(self):

 return self.stack[-1]

AStack = Stack()

AStack.add("Mon")

AStack.add("Tue")

AStack.peek()

print(AStack.peek())

AStack.add("Wed")

AStack.add("Thu")

print(AStack.peek())

POP from a Stack

class Stack:

 def __init__(self):

self.stack = []

 def add(self, dataval):

Use list append method to add element

 if dataval not in self.stack:

self.stack.append(dataval)

 return True

 else:

 return False

Use list pop method to remove element

 def remove(self):

 if len(self.stack) <= 0:

 return ("No element in the Stack")

 else:

 return self.stack.pop()

AStack = Stack()

AStack.add("Mon")

AStack.add("Tue")

AStack.add("Wed")

AStack.add("Thu")

print(AStack.remove())

print(AStack.remove())

DATA STRUCTURES USING PYTHON Page 86

Queue:

Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a queue is open

at both its ends. One end is always used to insert data (enqueue) and the other is used to remove

data (dequeue). Queue follows First-In-First-Out methodology, i.e., the data item stored first

will be accessed first.

Adding Elements to a Queue

class Queue:

 def __init__(self):

self.queue = list()

 def addtoq(self,dataval):

Insert method to add element

 if dataval not in self.queue:

self.queue.insert(0,dataval)

 return True

 return False

 def size(self):

 return len(self.queue)

TheQueue = Queue()

TheQueue.addtoq("Mon")

TheQueue.addtoq("Tue")

TheQueue.addtoq("Wed")

print(TheQueue.size())

Removing Element from a Queue

class Queue:

 def __init__(self):

self.queue = list()

 def addtoq(self,dataval):

Insert method to add element

 if dataval not in self.queue:

self.queue.insert(0,dataval)

 return True

 return False

Pop method to remove element

 def removefromq(self):

 if len(self.queue)>0:

 return self.queue.pop()

 return ("No elements in Queue!")

TheQueue = Queue()

TheQueue.addtoq("Mon")

TheQueue.addtoq("Tue")

TheQueue.addtoq("Wed")

DATA STRUCTURES USING PYTHON Page 87

print(TheQueue.removefromq())

print(TheQueue.removefromq())

	DIGITAL NOTES
	ON
	DATA STRUCTURES USING PYTHON
	B.TECH II YEAR - II SEM
	(2019-20)
	Definition:
	History of Python
	Python Features:
	Need of Python Programming
	 Softwarequality
	 Developerproductivity
	 Supportlibraries
	 Componentintegration
	 Enjoyment

	 It'sObject-Oriented
	 It'sFree
	 It'sPortable
	 It'sPowerful
	 Automatic memorymanagement
	 Programming-in-the-large support
	 It'sMixable
	 It's Easy toUse
	 It's Easy toLearn
	 InternetScripting
	 Database Programming
	 Image Processing, AI, Distributed Objects,Etc.

	Who Uses Python Today?
	Byte code Compilation:
	The Python Virtual Machine:
	Applications of Python:
	What Are Python’s Technical Strengths?

	Download and installation Python software:
	Setting up PATH to python:
	Edit.

	Running Python:
	a. Running PythonInterpreter:
	b. Running Python Scripts inIDLE:
	c. Running python scripts in CommandPrompt:

	Variables:
	Assigning Values to Variables
	Multiple Assignments to variables:
	a = b = c = 1
	a, b, c = 1, 2.5, ”mothi”
	KEYWORDS

	INPUT Function:
	OUTPUT function:
	print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False)

	Indentation
	Standard Data Types:
	Python Numbers:
	Program:
	Output:

	Python Strings:
	Program:
	Output:

	Built-in String methods for Strings:
	Example:
	Output:

	Python Boolean:
	Program:
	Output:

	Data Type Conversion:
	Types of Operators:
	Arithmetic Operators:
	Program:
	Output:

	Comparison (Relational) Operators
	Example:

	Assignment Operators
	Example:
	Output:

	Logical Operators
	Example:
	Output:

	Bitwise Operators
	Example:
	Output:

	Identity Operators
	Example:

	Python Operators Precedence
	Expression:
	Evaluation of Expressions
	Variable = expression
	Example:
	Output:

	Decision Making:
	The if Statement
	Syntax:
	Example:
	Example: (1)
	Q) Write a program for checking whether the given number is even or not. Program:
	Output-1: Output-2:
	Syntax: (1)

	Decision Loops
	Syntax
	Example-1: Example-2:
	Output-1: Output-2:
	Example-1: Example-2: (1)
	Output-1: Output-2: (1)
	Q) Write a program to display the factorial of given number. Program:
	Nested Loop:
	Example-1:
	Example-7:
	Example-8:
	Example-9:
	Example-11:
	3) Write a program to print n prime numbers and display the sum of primenumbers. Program:
	4) Using a for loop, write a program that prints out the decimal equivalents of 1/2, 1/3, 1/4, . . . ,1/10
	Output:
	5) Write a program that takes input from the user until the user enters -1. After display the sum ofnumbers.
	6) Write a program to display the followingsequence.
	Output-2:
	10) Write a program to print sum of digits. Program:
	11) Write a program to print given number is Armstrong or not. Program:
	12) Write a program to take input string from the user and print that string after removingovals.
	Advantages:
	Creating an array:
	Example:
	Importing the Array Module:
	import array
	a = array.array(‘i’, [4,8,-7,1,2,5,9])
	from array import *
	a = array(‘i’, [4,8,-7,1,2,5,9])
	Output: (1)
	Indexing and slicing of arrays:
	a = array(‘i’, [10,20,30,40,50])
	Example: (1)
	Output: (2)
	Array Methods:

	Difference between a function and a method:
	Objectname.methodname() Classname.methodname()
	Syntax:
	Example:

	Calling Function:
	Example:

	Returning multiple values from a function:
	return a, b, c
	Example:
	Pass by Value:
	x=10
	Output:
	modify(x)
	x=15
	Pass by Reference:
	Output: (1)
	Formal and Actual Arguments:
	Example: (1)
	a) PositionalArguments:
	b) KeywordArguments:
	def grocery(item, price):
	grocery(item=’sugar’, price=50.75)
	grocery(price=88.00, item=’oil’)
	Output: (2)
	c) DefaultArguments:
	def grocery(item, price=40.00)
	Example: (2)
	d) Variable LengthArguments:
	add(a,b)
	add(10,15,20)
	def add(farg, *args):
	Example: (3)
	Local and Global Variables:
	Example-1:
	Output: (3)
	NameError: name 'a' is not defined
	Example-2:
	Output: (4)
	NameError: name 'b' is not defined The GlobalKeyword:
	Example-1: (1)
	Output: (5)
	global Example-2:
	Output: (6)

	Recursive Functions:
	Example-1:
	Output:

	Anonymous Function or Lambdas:
	def square(x): return x*x
	lambda x: x*x
	lambda argument_list:expression Example:
	The map() Function
	r = map(func, seq)
	Filtering
	Reducing a List
	Examples of reduce ()

	Function Decorators:
	Example-1:
	Output:
	Output: (1)
	Output: (2)

	Function Generators:
	Output:

	Modules:
	from statement:
	>>> from fibo import *
	Namespaces and Scoping

	LIST:
	Creating a List:
	Accessing Values in list:
	Ex:
	Output:
	Creating lists using range() function:
	Looping on lists:
	Ex-1:
	Output: (1)
	Updating and deleting lists:
	Example:
	Example: (1)
	Example: (2)
	Concatenation of Two lists:
	Example: (3)
	Repetition of Lists:
	Membership in Lists:
	Example: (4)
	Aliasing and Cloning Lists:
	Example: (5)
	Example: (6)
	Methods in Lists:
	Finding Common Elements in Lists:
	Example: (7)
	Nested Lists:
	Example: (8)
	Nested Lists as Matrices:
	Example: (9)

	List Comprehensions:
	Example:

	TUPLE:
	Creating Tuples:
	Accessing the tuple elements:
	Updating and deleting elements:
	Example-1:
	Operations on tuple:
	Syntax
	Parameters
	Return Value
	Example:

	SET:
	Creating a Set:
	Syntax:
	Operations on set:
	Updating a set:

	Dictionary:
	Example:
	Dictionary Methods:
	Converting Lists into Dictionary:
	Example: (1)
	Converting Strings into Dictionary:
	Q) A Python program to create a dictionary and find the sum of values.
	Bubble Sort:

	Selection Sort:
	Linked List Representation:
	Types of Linked List:

